

Photovoltaic Simulators PVS series PVS 1000/LV

The High Speed Simulators



Fig. 1: PVS 1000/LV

- ✓ Free programmable I/V characteristics
- ✓ Different solar cells and also partly shadowed PV-generators can be simulated.
- ✓ Fast response time to load changes: typical less than 100µs
- √ 100Hz ripple on current and voltage of single phase inverters is reproduced realistically
- ✓ The I/V curve is simulated very accurately
- ✓ Ability to simulate dynamic irradiance and temperature, possibility of simulation of the behaviour of a PV-generator during a typical cloudy or clear day
- ✓ Evaluation of static and dynamic MPP-tracking efficiency
- ✓ Complies with the requirements according to IEC/EN 50530
- ✓ Available in standard version (up to 950V_{DC}) and low-voltage version (up to 150V_{DC}) for micro inverter testing

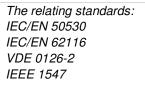


Fig. 2: PVS 25000

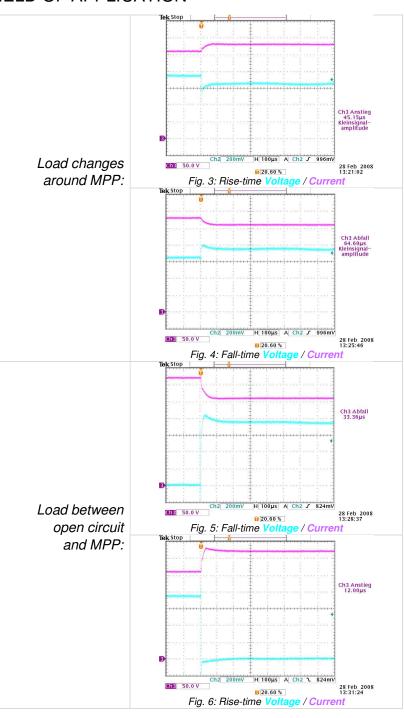
THE PV-SIMULATOR - FIELD OF APPLICATION

The PV-Simulator reproduces in real time the behaviour of many different solar panels.

The parameters influencing this behaviour in reality are the changing weather conditions, the variation of the irradiation during the day and also local conditions like shadowing and pollution.

To simulate this condition the PVS has a capability for fast control adjustments.

Fast response time


Due to the fast DSP based regulation system, the response time to load changes is very fast.

For the IEC/EN 50530 and the specified MPP tracking algorithm this fast response time is absolutely necessary.

See Spitzenberger & Spies Application note under:

http://www.spitzenberger.de/weblink/1005

The diagrams in Fig. 3-6 show the measured riseand fall-times at different load conditions.

100HZ RIPPLE / FREE PROGRAMMABLE CURVES

100Hz Ripple

One of the requirements of the photovoltaic simulator according to the IEC/EN 50530 is:

"This requires a sufficient dynamic of the PV simulator in order to follow the dynamic voltage changes that occur in the measurement (e.g. the typical ripple of single phase inverters with twice the grid frequency)"

With real photovoltaic generators this typical 100Hz ripple on current and voltage when operating with a single phase inverter can be measured. Some inverters use this for a fast MPP tracking.

When operating with the PV-Simulator this ripplebehaviour is exactly as it is in reality, because of the very fast response time capability.

Free programmable curves

I/V-curves are adjustable via software over a wide range to simulate various conditions for dynamic irradiances and temperature changes.

This includes "in the field" measured I/V curves, stored imported and into the Spitzenberger & Spies control software.

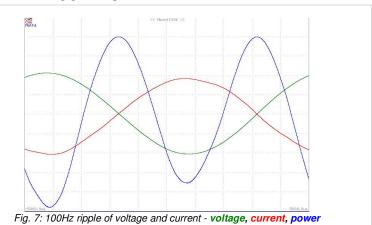
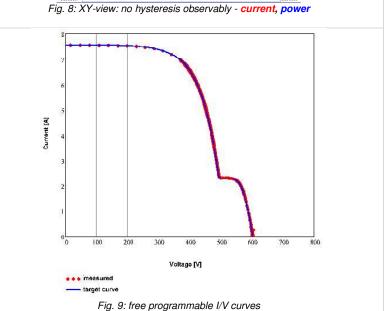
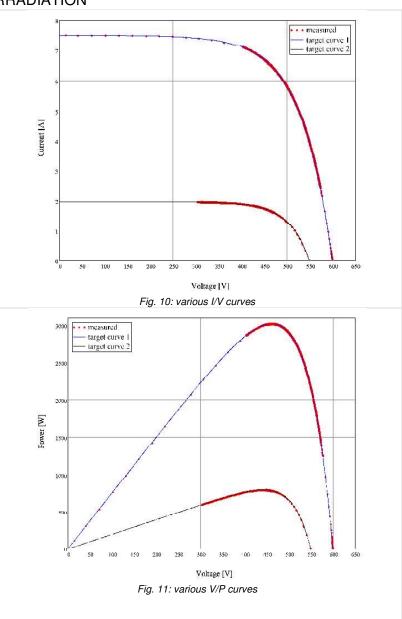



Fig. 8: XY-view: no hysteresis observably - current, power

SIMULATION OF DYNAMIC IRRADIATION

Irradiation

The intensity of the solar radiation density – the irradiation – is varying during the day.


Slow variations occur because of the changing position of the sun.

Fast variations can occur at cloudy days, when the sun is shadowed within seconds and cleared some minutes later and again shadowed.

Various curves – corresponding to different irradiance - can be defined with specified time course.

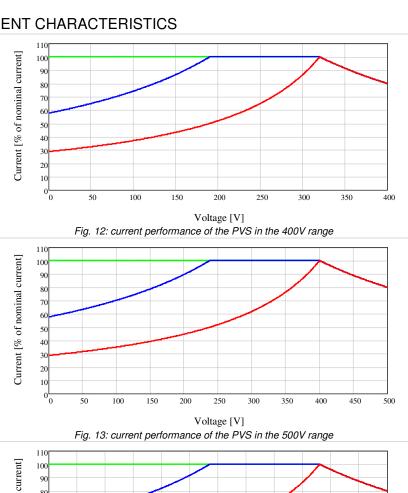
Transition between two curves will be interpolated; the transition time is freely programmable.

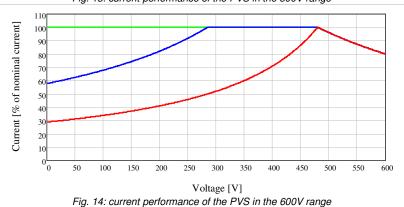
The specified curves are met exactly during the complete measurement duration.

VOLTAGE RANGES – CURRENT CHARACTERISTICS

Due to different types of solar generators the PVS standard series has five voltage ranges:

- 400V
- 500V
- 600V
- 800V
- 950V

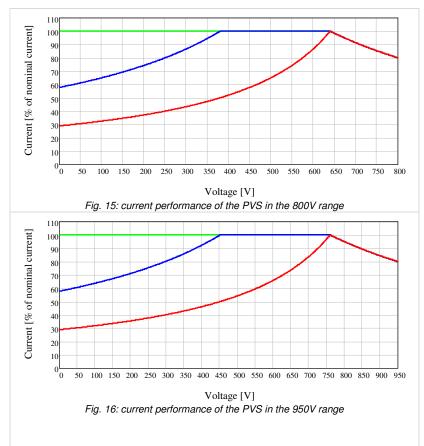

The diagrams show the maximum possible current capability in the according voltage ranges, depending on the adjusted output voltage. This correlates also to the maximum available power capability of the PVS depending on the adjusted output voltage.


The current capability of the PVS is specified as:

- Continuous current capability
- Short time current capability

(up to 2 minutes)

 Peak current capability (up to 50ms)



OPTIONAL VOLTAGE RANGES - CURRENT CHARACTERISTICS

	PVS 1	000	PVS 3000	PVS 7000	PVS 10000	PVS 15000	PVS 25000
- Option 11-200/DC at 160V _{DC}	3.2A	DC	9.4A _{DC}	22A _{DC}	31A _{DC}	50A _{DC}	80A _{DC}
	PVS 3		PVS 42500	PVS 50000	PVS65000	PVS 85000	PVS100000
- Option 11-200/DC at 160V _{DC}	100 <i>A</i>	λ_{DC}	135A _{DC}	157A _{DC}	200A _{DC}	270A _{DC}	314A _{DC}
Fig. Optional voltage range 2 Current performa	18: 00V unce	11 10 9 9 8 8 8 7 7 6 4 3 3 2 2 1		50 75	100 Voltage [V]	125 150	175 200

TECHNICAL DATA - GENERAL

	PVS Series
DC:	$+400V_{DC}$ / $+500V_{DC}$ / $+600V_{DC}$ / $+800V_{DC}$ / $+950V_{DC}$
	0,2% / 0,5% (typ. / max.) upper range value
	0,2% / 0,5% (typ. / max.) upper range value
	< 250μs / typical < 100μs
	Overload / Short Circuit / Over temperature
	IEEE488
Voltage:	0.1V resolution
Current:	0.01A resolution
Power:	1W resolution
curves:	up to 1024 curves
	0°C up to 40°C
	Voltage: Current: Power:

Options		
10:	Internal resistance compensation	available
11	Special voltage	
11-200/DC	Additional DC voltage range	0 200V _{DC}
18	Special line voltages	In the range from 110V 300V
	Precision Power Analyser for efficiency measurement	

Remarks:

- $1) \quad \textit{at nominal voltage} \\$
- 2) max. voltage between earth and ground of the amplifier output -950 V_{DC} , +400 V_{DC}
- 3) to increase the output power of an amplifier, up to three similar amplifiers may be connected in parallel
- 4) with measurement adaptation to PAS
 5) at 230V input voltage
- 6) max. / typ. (of measured value ±2 digit)

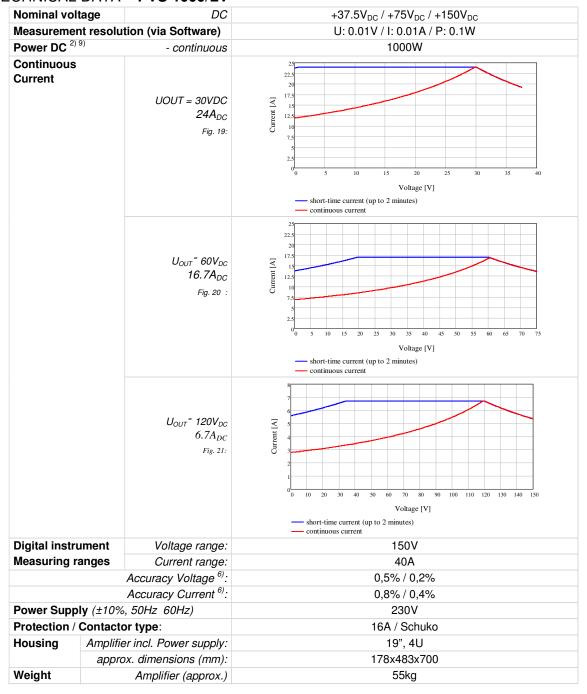
TECHNICAL DATA - TYPE SPECIFIC

			PVS 1000	PVS 3000	PVS 7000	
Power DC 1) 5)	- continuous:	1000W	3000W	7000W	
Continuous $U_{OUT}^{=} 320V_{DC}$:		3.2A _{DC}	9.4A _{DC}	22A _{DC}		
Current U _{OUT} = 400V _{DC} :		2.5A _{DC}	7.5A _{DC}	17.5A _{DC}		
		U_{OUT} = 480 V_{DC} :	2.1A _{DC}	6.3A _{DC}	14A _{DC}	
		$U_{OUT}^{=}$ 640 V_{DC} :	1.6A _{DC}	4.7A _{DC}	11A _{DC}	
		$U_{OUT}^{=}$ 760 V_{DC} :	1.3A _{DC}	4A _{DC}	9.25A _{DC}	
Digital instr	ument	Voltage range:		1000V		
Measuring	ranges	Current range:	5A	12A	25A	
		Accuracy Voltage ⁶ :		0,5% / 0,2%		
		Accuracy Current ⁶⁾ :	0,8% / 0,4%			
Power Supp		50Hz 60Hz)	230V	230V 230V/400V		
Protection:			16A	3 x 16A	3 x 20A	
Contactor t	ype:		Schuko	CEE		
Housing		Amplifier:	19", 7U	19", 5U	19",7U	
	approx	a. dimensions (mm):	311x483x600	222x483x600	311x483x600	
		Power Supply	included	19", 5U	19" 5U	
	арргох	a. dimensions (mm):	-	222x483x600	222x483x600	
Weight		Amplifier (approx.)	50kg	30kg	45kg	
	Pow	er Supply (approx.)	-	85kg	100kg	

			PVS 10000	PVS 15000	PVS 25000	
Power DC 1)	5)	- continuous:	10000W	15000W	25000W	
Continuous		U _{OUT} = 320V _{DC} :	31A _{DC}	50A _{DC}	80A _{DC}	
Current		U _{OUT} = 400V _{DC} :	25A _{DC}	38A _{DC}	63A _{DC}	
		$U_{OUT}^{=}$ 480 V_{DC} :	21A _{DC}	32A _{DC}	53A _{DC}	
		$U_{OUT}^=$ 640 V_{DC} :	16A _{DC}	25A _{DC}	40A _{DC}	
		$U_{OUT}^{=}$ 760 V_{DC} :	13.25A _{DC}	21A _{DC}	33A _{DC}	
Digital instru	ument	Voltage range:		1000V		
Measuring r	anges	Current range:	40A	60A	100A	
		Accuracy Voltage ⁶ :		0,5% / 0,2%		
		Accuracy Current ⁶⁾ :		0,8% / 0,4%		
Power Supp	ly (±10%	6, 50Hz 60Hz)	230V/400V			
Protection:			3 x 40A	3 x 50A	3 x 63A	
Contactor ty	/pe:			CEE		
Housing		Amplifier:	19", 10U	19" 17U	19", 23U	
	appro	x. dimensions (mm):	444x483x600	755x483x600	1022x483x600	
		Power Supply	19", 10U	19", 12U	19", 12U	
	appro	ox. dimensions (mm):	444x483x600	533x483x600	533x483x600	
Weight		Amplifier (approx.)	60kg	80kg	120kg	
	Po	wer Supply (approx.)	220kg	240kg	250kg	

			PVS 32500	PVS 42500	PVS 50000	
Power DC 1)	5)	- continuous:	32500W	42500W	50000W	
Continuous $U_{OUT}^{=} 320V_{DC}$:		100A _{DC}	135A _{DC}	157A _{DC}		
Current $U_{OUT}^{=} 400 V_{DC}$:		82A _{DC}	108A _{DC}	125A _{DC}		
		U _{OUT} = 480V _{DC} :	68A _{DC}	90A _{DC}	105A _{DC}	
		$U_{OUT}^{=}$ 640 V_{DC} :	51A _{DC}	67A _{DC}	79A _{DC}	
		U _{OUT} = 760V _{DC} :	43A _{DC}	56A _{DC}	66A _{DC}	
Digital instrument		Voltage range:		1000V		
Measuring r	anges	Current range:	120A	150A	180A	
		Accuracy Voltage ⁶ :		0,5% / 0,2%		
		Accuracy Current ⁶⁾ :	0,8% / 0,4%			
Power Supp	oly (±10%)	50Hz 60Hz)	230V/400V			
Protection:			3 x 100A	3 x 125A	3 x 160A	
Contactor ty	/pe:		CI	ĒE		
Housing		Amplifier:	19", 33U	19", 39U	19",46U	
	approx	c. dimensions (mm):	1467x483x600	1733x483x600	2042x483x600	
		Power Supply	19", 2x12U	19", 39U	19",46U	
	approx	k. dimensions (mm):	1066x483x600	1733x483x600	2042x483x600	
Weight		Amplifier (approx.)	160kg	200kg	300kg	
	Pov	ver Supply (approx.)	2 x 250kg	2 x 250kg	800kg	

			PVS 65000	PVS 85000	PVS 100000
			= 2 x PVS 32500	= 2 x PVS 42500	= 2 x PVS 50000
			Ext	ernal parallel connec	tion
Power DC 1) 5))	- continuous:	65000W	85000W	100000W
Continuous		U _{OUT} = 320V _{DC} :	200A _{DC}	270A _{DC}	314A _{DC}
Current		U _{OUT} = 400V _{DC} :	164A _{DC}	216A _{DC}	250A _{DC}
		U _{OUT} = 480V _{DC} :	136A _{DC}	180A _{DC}	210A _{DC}
		U_{OUT} = 640 V_{DC} :	102A _{DC}	135A _{DC}	158A _{DC}
		U _{OUT} = 760V _{DC} :	86A _{DC}	112A _{DC}	132A _{DC}
Digital instrui	ment	Voltage range:		1000V	
Measuring ra	nges	Current range:	2x120A	2x150A	2x160A
		Accuracy Voltage ⁶ :		0,5% / 0,2%	
		Accuracy Current ⁶⁾ :		0,8% / 0,4%	
Power Supply	y (±10%,	50Hz 60Hz)		230V/400V	
Protection:			3 x 200A	3 x 250A	3 x 320A
Contactor typ	oe:				
Housing		Amplifier:	19", 2x33U	19", 2x39U	19", 2x46U
	approx	. dimensions (mm):	1467x483x600	1733x483x600	2044x483x600
		Power Supply	19", 42U	19", 42U	19", 46U
	approx	dimensions (mm):	1867x483x800	1867x483x800	2044x483x600
Weight		Amplifier (approx.)	2x160kg	2x200kg	2x300kg
	Pow	er Supply (approx.)	1000kg	1200kg	1500kg



TECHNICAL DATA - PVS 1000/LV

"We can make weather"

"We can make weather"

THE HIGH-LEVEL PHOTOVOLTAIC SIMULATOR PVS FROM' SPITZENBERGER & SPIES

The relating standards:
IEC/EN 50530
IEC/EN 62116
VDE 0126-2
IEEE 1547
and many manufacturers test
specifications

The amount of generated energy of a solar panel field (and therefore the profitable efficiency) is mainly depending on varying weather conditions like cloudiness and adverse weather situations. To achieve the maximum energy rate at heavy varying irradiation modern intelligent solar inverters are used.

OVERALL EFFICIENCY OF SOLAR INVERTERS

The overall efficiency of solar inverters is tested according to IEC/EN 50530.

Compliant testing requires powerful voltage and current sources and analyzer units operating in excellent harmony. The testing of modern solar inverters requires three main functions of the testing equipment:

- 1. Simulation of solar panels for testing solar inverters according to IEC/EN 50530
- 2. Generation of typical loads for the anti-islanding tests according to IEC/EN 62116
- 3. Simulation of the connected grid

Grid-connected photovoltaic systems are feeding the generated energy into the power distribution grid network. The amount of power fed into the grid defines the profitability of the whole solar site. The IEC/EN 50530 describes in detail the necessary calculation formulas and testing routines to evaluate the overall efficiency of solar inverters.

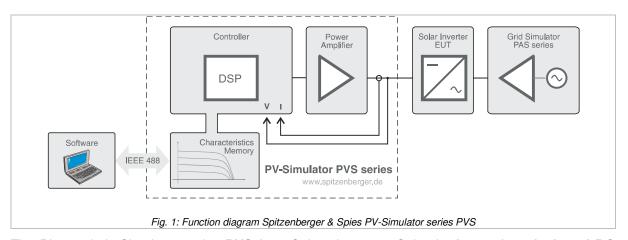
Solar inverters must be designed to be able to deal with many different operating conditions. Intensive testing during the development process of inverters as well as during their production is requested.

As a good strategy for a complete test of solar inverters three main tasks have to be carried out:

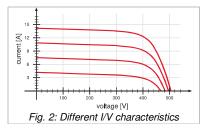
- simulation of a solar generator and operating the inverter in the MPP (maximum power point), testing of the MPP tracking function, evaluation and calculation of the overall efficiency
- simulation of varying load conditions and different disturbances like transients, harmonics, ripple, cos ⊕ etc.
- simulation of the connection to the public grid during normal operating conditions as well as during irregular conditions like voltage interruptions, variations and drops

Testing of solar inverters:

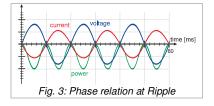
- simulation of the energy generation
- MPP tracking testing
- simulation of different loads
- simulation of electric disturbances
- simulation of the public grid connection



SIMULATION OF THE ENERGY GENERATION:


The generated energy of a solar site is varying in dependency of the intensity of the solar irradiation, partly cloudiness or shading as well as the ambient temperature and pollution of the panel surface. The conversion of the panel-power through the solar inverter should be carried out in the maximum power point(MPP).

To convert always the maximum available energy generated by the solar panels many inverters use a MPP tracking algorithm. This algorithm changes the load condition of the inverter so that the panel field always sees an ideal load and can transfer the maximum available energy.



The Photovoltaic-Simulator series **PVS** from Spitzenberger & Spies is **the perfect designed DC Source** to reproduce the I/V characteristic curves as required according to **IEC/EN 50530**.

With the PVS solar panels with different technologies can be simulated (e.g. mono-crystalline or poly-crystalline). The provided software package SPS_PVS offers an easy calculation of the necessary I/V characteristic (according to 1- or- 2-diode model). In addition, externally measured and stored characteristics can be imported if they have a CSV-Format.

The sequence of different characteristics, their duration and transition time is free adjustable. Complete test cycles can be set up easily. The evaluation of measured date ca be done graphically as well as in a numeric format. The evaluation can be stored for documentation.

Many (single-phase) inverters are generating a type depending AC ripple on their DC input. The power fed into the grid has a pulse frequency of double the mains frequency (100Hz in Europe).

The inverter consumed power is fluctuating therefore with the same frequency (100Hz in Europe) and produces the described ripple. This ripple is very close to reality conditions, if the dynamic response of the PV simulator is very high.

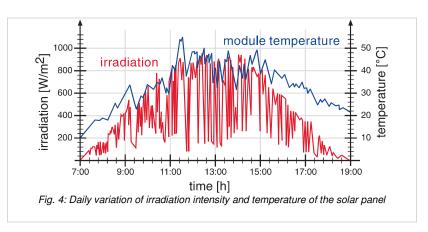
It is very important, that the simulator power supply is not suppressing this ripple as a result of the voltage adjustment. More and more inverters use the amplitude and phase shift of the ripple voltage and current to achieve a very fast MPP tracking.

This method is much faster than the conventional method "disturb and perturbate".

Especially at cloudy weather conditions, where the solar irradiation is changing rapidly, a fast MPP tracking algorithm gives a much higher overall efficiency. The number of inverters using this ripple-based MPP algorithm will increase steadily.

PV simulators have to have the ability, to reproduce the according current/voltage characteristic curves at ripple condition very precisely.

For a very precise simulation of the current-/voltage- characteristic a very fast response time of the PV simulator is essential.


While switch-mode amplifiers as the simulator source have a response time of typically 2-3ms, linear working transistor amplifiers have a response time in µs area.

When the PV simulators response time is too slow, the I/V-operating points are no longer located on the I/V-characteristic curve, they circle around the desired MPP area on the characteristic curve (See application note "Necessity for high-speed PV simulators").

A correct testing and evaluation of the solar inverter compliant to the IEC/EN 50530 is not possible with switch-mode amplifiers.

Above and beyond the IEC/EN 50530 the Spitzenberger & Spies software package offers the possibility to store panel values of solar irradiation and temperature variation in the course of the day.

External data values can be imported, if they have CSV-Format.

The long term behavior of solar inverters can be tested with this functionality. Measured data from all locations of the earth can be simulated in laboratory.

"Solar generators and islanding"

A danger for human and machine

The relating standards:
IEC/EN 50530
IEC/EN 62116
VDE 0126-2
IEEE 1547
and many manufacturers test
specifications

During normal operation the solar inverter supplies the load which is regularly supplied by the public network. Depending on the amount of generated energy either the solar inverter delivers energy into the public network or the public network delivers energy to the connected loads.

During all operating modes each connected component must comply to the specifications stated in IEEE1547. To test solar inverters in a suitable way the connection between inverter and public network shall be simulated.

A desired simulator like the PVS Series from Spitzenberger & Spies must be able to generate irregular interconnection situations and conditions for testing the inverters according to realistic conditions and to verify their conformity.

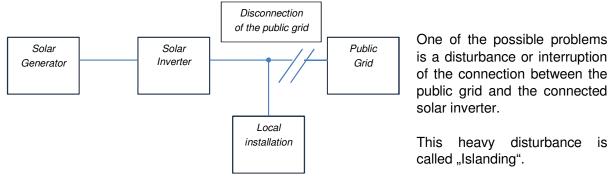


Fig. 1: Schematic diagram of islanding

Islanding is a situation when the connection to the public network is interrupted or the public network has been switched off. Interaction between the local generators and the connected loads causes then the islanding effect and affects the solar inverter a running public grid.

The main problems during islanding are:

- 1. The public power distributors can no longer control and influence voltage and frequency in the distribution network. Inside the islanding system deviation of voltage and frequency can cause malfunction and/or damage of the local connected loads.
- 2. Injury of operating personnel can be caused when the public grid is cut off for maintenance. The personnel has the opinion of a voltage free network whilst the solar generator still delivers energy and is setting the local islanding grid still under voltage.

CHECKING ANTI-ISLANDING FUNCTIONS

The IEC/EN 62116 is preventing humans and machines from injury and damage. It defines test specifications and methods for solar inverters to check their ability to avoid the islanding effect.

Practically each solar inverter must have an anti-islanding function which cuts off the connection between inverter and the local grid on error condition. The local grid status is set voltage free.

Testing equipment according to IEC/EN 62116

- 1. Waveform recorder and power analyzer
- 2. DC source simulating a realistic photovoltaic source
- 3. AC source simulating the public grid
- 4. AC loads combined RLC load

The IEC/EN 62116 defines an explicit test of this anti-islanding function.

The optimal DC source for those tests is a PV simulator complying to the IEC/EN 50530.

The PV Simulator series **PVS from Spitzenberger & Spies** complies to all necessities for DC source as defined in the IEC/EN 50530 and also in the IEC/EN 62116.

SIMULATION OF THE SUPPLY NETWORK – GRID SIMULATION

For the AC voltage source for the simulation of the public grid requirements for voltage and frequency stability and harmonic distortion are defined. When using the Spitzenberger & Spies Basic EMC System as the AC voltage source all requirements can be fulfilled fully compliant.

Furthermore disturbances of the public grid as well as voltage fluctuations and frequency variations can be simulated and monitored. With this programmable source global products can be tested

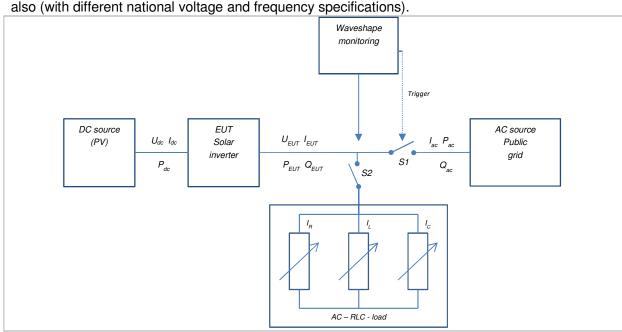
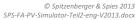



Fig. 2: Test setup for the IEC/EN 62116

RLC LOAD AS A POWER RESONANT CIRCUIT

To establish a realistic environment for this testing a typical AC load as a combination of R, L and C is defined in the standard.

The RLC load shall be adjusted according to the output power capability of the respective inverter and shall be in resonance condition at the nominal frequency.

The quality Q_f of the RLC load (calculated according to IEC/EN 62116) shall be adjusted to 1,0 +/-0,05. When carrying out the different test procedures the RLC load has to be adjusted accordingly.

Three test conditions are defined for testing:

- A: P_{EUT} 100%
- B: P_{EUT} 50%
- C: P_{EUT} 25%

The three test conditions A, B and C are adjusted via changing of the EUT input voltage to 90%, 50% und 10% of the nominal voltage. As a first step the RLC load is adjusted so, that the fundamental frequency components of the active and the reactive power as well as the fundamental frequency component of the current flow through the connection switch is set to zero. The RLC load is now a parallel resonant circuit in resonance.

To start the test the connection switch to the public grid is opened.

For the test condition A the RLC load's active and reactive power have to be adjusted according to the adjacent table.

Percental change of the active load, reactive load from the nominal values					
-5,+5	0,+5	+5,+5			
-5,0		+5,0			
-5,-5	0,-5	+5,-5			

Table for test condition A

For the test conditions B and C it is enough, to adjust only the reactive load (either L or C) at a constant active load.

For the evaluation the run-on time $t_{\rm R}$ is measured, the amount of time that an unintentional island condition exists. Run-on time is defined as the interval between the opening of the switch S1 (connection to the public grid) and the cessation of the EUT output current.

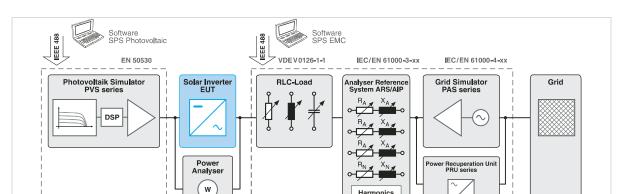
For all combinations stated in the test conditions A, B and C the run-on time t_R is now measured. If the run-on time exceeds the maximum value (as stated in the according specifications of power distributors or national standards) the EUT's test failed.

Taking all the requirements for the RLC load according to IEC/EN 62116 into consideration a complex profile of necessities for the test system arises.

RLC LOAD - USEFUL EXTENSION AND OPTION OF THE TEST SYSTEM

Spitzenberger & Spies has developed an optional RLC load unit for the PV simulator series PVS. This RLC unit complies to all requirements according to IEC/EN 62116. In conjunction with complying measurement units like digital oscilloscopes and power analyzers a complete test according to IEC/EN 50530 and IEC/EN 62116 can be carried out.

A convenient software package for running the tests and for documentation completes the PVS simulator system



The following diagram shows a schematic overview of such a test system:

With a complete test system from Spitzenberger & Spies compliant testing can be done not only in photovoltaic area, it is (as the basic emc system) the best solution also for fully compliant testing according to emission (IEC/EN 61000-3-xx) and immunity (IEC/EN 61000-4-xx) standards.

Grid Simulator

MANY POSSIBILITIES FAR BEYOND THE STANDARDS

Looking at the PV simulator side, the input of the solar inverter can be supplied with arbitrary solar panel characteristics and irradiation changes from any point of the earth. The PVS simulator just has to be programmed with this data files with the Spitzenberger & Spies software. Realistic weather and panel situations from anywhere can be simulated easily in laboratory environment.

On the other hand, the solar inverter's output is connected to the Spitzenberger & Spies Basic EMC system, a grid-simulator with arbitrary functions, which is able to simulate each local grid from any power distributor worldwide. This grid-simulator can not only simulate a stable network, it can perform also many disturbances like voltage drops and voltage variations, frequency variations, unbalances and many more, as described in the IEC/EN 61000-4 series standards.

PV-Simulator

Necessity for high speed PV Simulators

The fast response time of PV simulator is required to realistically simulate the I/V characteristic when the inverter produces a ripple on DC voltage and DC current of the PV simulator. Single phase inverters have typically a ripple with twice the grid frequency. A ripple can also occur when the MPP tracker is searching very fast on the I/V characteristic. Real solar cells have a I/V characteristic like shown in Fig. 1:

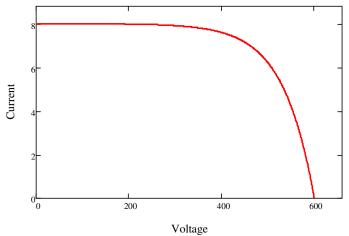


Fig. 1: Current/voltage characteristic of real solar cells

So when the voltage goes up the current goes down and vice versa. The PV simulator has to simulate this characteristic as realistically as possible. To achieve the maximum accuracy to reach the I/V characteristic the PV simulator measures voltage and current and controls its output accordingly.

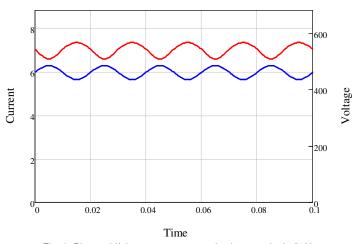


Fig. 2: Phase shift between current and voltage at ripple 50Hz

When there is an abrupt load change it takes typically 100µs with the PV simulator PVS from Spitzenberger & Spies until the output is adjusted according to the I/V characteristic. Switch mode Simulators need much longer time (maybe 2ms or more). For example: single phase inverters have a typical ripple with twice the grid frequency. With 50Hz mains frequency this is a 100Hz ripple.

With real solar generators as well as with the linear type PV simulator PVS from Spitzenberger & Spies the voltage and current characteristic look like the following diagram in Fig. 3:.

The operating points are lying all on the desired I/V characteristic. It is very important that the PV simulator is fast enough, to follow and to make as less additional phase shift as possible. The voltage and current ripple are inverse (current goes up => voltage goes down), so phase angle is 180 degrees.

If you take a rise time of 100µs (from 10% to 90%) and assume that the simulator acts like a first order filter,

then the time constant is calculated as:

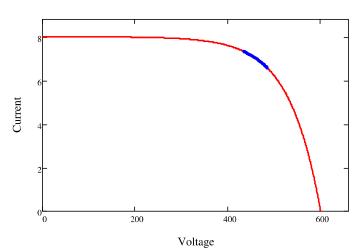


Fig. 3: Operating points (blue) when using PVS

$$T = \frac{t_rise}{ln(9)} = 45\mu s$$

The phase shift can be calculated with the following formula:

$$\varphi = -atan(2 * \pi * f)$$

For the PVS (T=45µs) the calculation of the phase shift at 100Hz is -1.6 degrees.

For a switch mode amplifier with a rise time of e.g. 2ms the phase shift would be about 30 degrees which is too much for efficient MPP tracking measurement. When the PV simulator is too slow for the ripple produced by the inverter, the operating points are not on the I/V characteristic. The behaviour is different to the behaviour of real solar cells. Accurate MPP tracking efficiency measurements like described in IEC/EN 50530 wouldn't be possible in such a case.

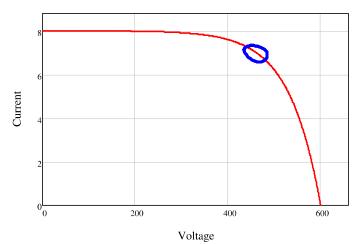


Fig. 4: Operating points (blue) when using switch-mode simulator

In IEC/EN 50530 there is the requirement:

"This requires a sufficient dynamic of the PV simulator in order to follow the dynamic voltage changes that occur in the measurement (e.g. the typical ripple of single phase inverters with twice the grid frequency)"

PAS .../GN/Kfz series of 2-/4-Quadrant Amplifiers

For 12V, 24V and new 48V

The relating standards:

ISO 7637

ISO 7637-2 Amendment 1

ISO 16750-2

ISO 21848

LV124

SAE J 1113-11

Audi BT-LAH XXX.915.181.XX

BMW GS 95002

BMW GS 95003-2

BMW GS 95024-2-2

DaimlerChrysler DO-10615

Fiat 9.90110

Ford EMC-CS-2009.1

General Motors GMW 3097

Mercedes-Benz MBN 10615

Mitsubishi ES-X82010

Nissan 28400NDS02_3

PSA B21 7110

Renault 36-00-808/--L

VW 80000

VW 80101

VW TL 82066

VW TL 82366

The 2-/4-Quadrant Amplifier type PAS GN/Kfz suits as an adjustable voltage source for the automotive supply simulation system for 12V, 24V and new 42V especially for the generation of pulse #2b and pulse #4 for all mentioned supply voltages.

The modularly constructed Automotive Supply Simulation System is a compact EMC-Test System for the execution of immunity measurements for pulse-shaped, line conducted disturbances at electronic equipment of motor vehicles. The high performance version enables tests of current-intense consumers or even complete vehicles.

- 2-/4-Quadrant Amplifiers
- ✓ High short-time load ability
 - Very high slew rate
- √ Wide frequency range
- Very low internal resistance
 - Common output
- Free programmable waveform generator

TECHNICAL DATA

Туре	PAS 1000/GN/Kfz	PAS 2500/GN/Kfz	PAS 5000/GN/Kfz			
Power 1)						
Continuous power:	900W at 60V	3000W at 60V	6000W at 60V			
Short-time power:	1500W for max. 3min at 60V (duty cycle 1:9)	4800W for max 3min at 60V (duty cycle 1:9)	9600W for max. 3min at 60V (duty cycle 1:9)			
Nominal Voltage:						
U_1 : $0V_{DC}$ $18V_{DC}$	I _{cont} : 28A _{DC} I _{short-time} : 44A _{DC}	I _{cont} : 100A _{DC} I _{short-time} : 150A _{DC}	I_{cont} : 200 A_{DC} $I_{short-time}$: 300 A_{DC}			
U_2 : $0V_{DC}$ $36V_{DC}$	$\begin{array}{ll} I_{cont} \colon & 22A_{DC} \\ I_{short-time} \colon & 44A_{DC} \end{array}$	I_{cont} : 65 A_{DC} $I_{short-time}$: 125 A_{DC}	$ \begin{array}{ll} \textbf{I}_{cont} \colon & 130 \textbf{A}_{DC} \\ \textbf{I}_{short\text{-time}} \colon & 250 \textbf{A}_{DC} \end{array} $			
U_3 : $0V_{DC}$ $60V_{DC}$	I_{cont} : 15 A_{DC} $I_{short-time}$: 25 A_{DC}	I_{cont} : 50 A_{DC} $I_{short-time}$: 80 A_{DC}	$ \begin{array}{ll} \textbf{I}_{cont} \colon & 100 \textbf{A}_{DC} \\ \textbf{I}_{short\text{-time}} \colon & 160 \textbf{A}_{DC} \end{array} $			
$U_1 \dots U_3$: -15 $V_{DC} \dots 0V_{DC}$	I_{cont} : 9A _{DC} $I_{short-time}$: 14A _{DC}	$\begin{array}{ll} I_{cont} \colon & 33A_{DC} \\ I_{short-time} \colon & 50A_{DC} \end{array}$	$ \begin{array}{ll} \textbf{I}_{cont} \colon & 66 \textbf{A}_{DC} \\ \textbf{I}_{short\text{-time}} \colon & 100 \textbf{A}_{DC} \end{array} $			
Digital instrument:						
Voltage range:		100V				
Current range:	100A	400A				
	Max	. / Typ. (of measured value ±2	? digit)			
Accuracy Voltage (DC):	0,5% / 0,2%					
Accuracy Current (DC):	0,8% / 0,4%					
Supply:						
Power Supply (±10%, 50Hz 60Hz)	230V	230V/400V	230V/400V			
Protection:	16A	16A	32A			
Contactor type:	Schuko	CEE	CEE			
lousing:	19"-plu	g-in unit, colour light grey (RA	AL 7035)			
Dimensions (mm): (without option pulse 5/7)	Amplifier incl. Power supply (4U) 178x483x600	Amplifier (6U): 267x483x600 Power supply (5U): 222x483x600	Amplifier (7U): 311x483x600 Power supply(12U): 533x483x600			
Weight:	approx. 60kg	PAS: approx. 30kg NT: approx. 90kg	PAS: approx. 65kg NT: approx. 200kg			
Dimensions (mm): (icluding option pulse 5/7)	Amplifier (6U): 267x483x600 Power supply (8U): 356x483x600	Amplifier (6U): 267x483x600 Power supply(8U): 356x483x600	Amplifier (7U): 311x483x600 Power supply (12U): 533x483x600			
Weight:	PAS: approx. 30kg NT: approx. 90kg	PAS: approx. 30kg NT: approx. 90kg	PAS: approx. 65kg NT: approx. 200kg			

Remarks:

1) nominal power at 230V supply voltage

Туре	PAS 7500/GN/Kfz	PAS 10000/GN/Kfz	PAS 15000/GN/Kfz		
Power 1)					
Continuous power:	7500W at 60V	15000W at 60V	22500W at 60V		
Short-time power:	18000W for max. 3min at 60V (duty cycle 1:9)	30000W for max. 3min at 60V (duty cycle 1:9)	45000W for max. 2min at 60V (duty cycle 1:9)		
Nominal voltage:					
U_1 : $0V_{DC}$ $18V_{DC}$	I_{cont} : 300 A_{DC} $I_{short-time}$: 600 A_{DC}	I _{cont} : 500A _{DC} I _{short-time} : 1000A _{DC}	I_{cont} : 675 A_{DC} $I_{short-time}$: 1350 A_{DC}		
U_2 : $0V_{DC}$ $36V_{DC}$	I_{cont} : 200 A_{DC} $I_{short-time}$: 400 A_{DC}	I _{cont} : 330A _{DC} I _{short-time} : 660A _{DC}	$\begin{array}{ll} I_{cont} \colon & 500 A_{DC} \\ I_{short-time} \colon & 1000 A_{DC} \end{array}$		
U_3 : $0V_{DC}$ $60V_{DC}$	I _{cont} : 150A _{DC} I _{short-time} : 300A _{DC}	I _{cont} : 250A _{DC} I _{short-time} : 500A _{DC}	I_{cont} : 375 A_{DC} $I_{short-time}$: 750 A_{DC}		
$U_1 \dots U_3$: -15 $V_{DC} \dots 0V_{DC}$	I_{cont} : 100 A_{DC} $I_{short-time}$: 200 A_{DC}	I _{cont} : 160A _{DC} I _{short-time} : 320A _{DC}	$\begin{array}{ll} I_{cont} \colon & 240 A_{DC} \\ I_{short-time} \colon & 480 A_{DC} \end{array}$		
Digital instrument:					
Voltage range:		100V			
Current range:	500A	1000A	1500A		
	Мах.	/ Typ. (of measured value ±2	? digit)		
Accuracy Voltage (DC):		0,5% / 0,2%			
Accuracy Current (DC):	0,8% / 0,4%				
Supply:					
Power Supply (±10%, 50Hz 60Hz)	230V/400V	230V/400V	230V/400V		
Protection:	32A	32A	63A		
Contactor type:	CEE	CEE	CEE		
Housing:					
Dimensions (mm): (without option pulse 5/7)	Amplifier (10U): 444x483x600 Power supply(12U): 533x483x600	Amplifier (7U): 311x483x600 Power supply(12U): 533x483x600	Amplifier (23U): 1022x483x600 Power supply(37U): 1643x483x600		
Weight:	PAS: approx. 75kg NT: approx. 250kg	PAS: approx. 65kg NT: approx. 200kg	PAS: approx. 65kg NT: approx. 200kg		
Dimensions (mm): (icluding option pulse 5/7)	Amplifier (7U): 311x483x600 Power supply (12U): 533x483x600	Amplifier (7U): 311x483x600 Power supply (12U): 533x483x600	Amplifier (7U): 311x483x600 Power supply (12U): 533x483x600		
Weight:	PAS: approx. 65kg NT: approx. 200kg	PAS: approx. 65kg NT: approx. 200kg	PAS: approx. 65kg NT: approx. 200kg		

Remarks:

1) nominal power at 230V supply voltage

Туре	All PAS xxx/GN/Kfz	
Voltage adjustment:	depending on oscillator used	
Load regulation: 0 nominal load	max. 2%, typ. <1%	
Gain stability:	10min: <0.2% at constant load and temperature 8h: <0.5% at constant load and temperature	
Line regulation:	<1.5x10 ⁻⁴ per 10V line-voltage change	
Frequency range at AC superposition:	DC 50kHz small signal bandwidth 8Vpp DC 100kHz small signal bandwidth 4Vpp	
Rise time (at load=10 Ω):	<10µs	
Slew rate:	$U_1:>1V/\mu s$ $U_2:>2V/\mu s$ $U_3:>3V/\mu s$	
Protection circuits:	Overload / Short circuit / Overtemperature	
Input:		
Input voltage: (for max. output voltage)	±5V _p	
Input impedance:	approx. 8kΩ	
Interface (optional):	IEEE488	
Ambient temperature:	0°C up to +40°C	

Options:	
Option 06:	Output voltage monitor
Option 07:	Output current monitor
Option 10:	Internal resistance compensation
Option 11:	Special voltage ranges
Option 17-300:	Floating output Max. voltage between earth and ground of the output of the amplifier:300V _{rms}
Option 18:	Special line voltages (110V 300V)
Option pulse 5:	U _{test pulse} 5 _(short-time) : max. 200V _{DC} R _i :0.5 Ω 8Ω
Option pulse 7:	$U_{test\ pulse}$ 7 $_{(short-time)}$: max80 V_{DC} R_i :10 Ω
Option OPD:	
Option Car Tester:	
Option Load Dump Generator:	

The relating standards:

ISO 7637

Test pulse 1 Test pulse 2 Test pulse 3

Pulse Generator type CAR – TESTER

EMC-Test Equipment for electrical installation of vehicles : Test pulses according to DIN/ISO 7637

Pulse Waveform

#1 1/2000μs, 600V

3/1000µs, 600V 3/2000µs, 600V

#2a 1/50µs, 600V

 $Ri = 2\Omega/4\Omega/10\Omega/$

 $20\Omega/50\Omega/90\Omega/$

#3 5/150ns, 800V

 $Ri = 50\Omega$

CAR-TESTER

POLSE
BOULDATION

FOLSE
BOULDATION

Three different types are available:

CAR-TESTER I

35 A_{DC} = continuous mode 50 A_{DC} short time, duty cycle 5%

CAR-TESTER II

100 A_{DC} = continuous mode 150 A_{DC} short time, duty cycle 5%

CAR-TESTER III

200 A_{DC} = continuous mode 360 A_{DC} short time, duty cycle 5%

The CAR-TESTER is an EMC test system designed for testing the electromagnetic immunity of the electrical installation of vehicles and components against supply line transients. It includes a set of pulse generators which supply the test pulses listed above, a triggerable power switch (to isolate the DC supply when testing with negative pulses) and the artificial network. A fast voltage probe, ratio 100:1, for capturing transient waveforms is also included.

CAR-TESTER features a microprocessor controlled user interface and display unit for ease of use. The microprocessor allows the user to either execute standard test routines, or a 'user defined' test sequence. The test parameters, which are shown on the built-in display, are easily adjusted by means of the rotary encoder. A standard parallel interface provides the ability to print a summary of the test parameters whilst testing is being carried out.

As well as manual control, the CAR-TESTER and all additional modules may be remotely controlled by a fibre optic computer interface. Software packages for generator control, documentation & test result evaluation are available.

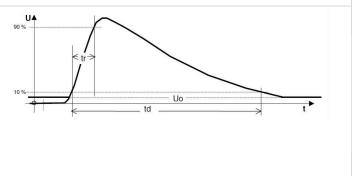
The CAR-TESTER impresses by its compact design, simple handling and precise reproducibility of test impulses. High-voltage switching is accomplished by means of maintenance-free semiconductor switches.

TECHNICAL DATA CAR-TESTER

Control:	Microprocessor control, LCD module	8*40 characters
	Optical-interface for remote control of the generator	Built-in
	Parallel printer interface for on-line documentation	25-way 'D' connector
	External trigger input	10V at 1kΩ
	Diagnostic input for monitoring of the test device	4 channels, 5V-Level
	Connector for external safety interlock loop	24V _{DC}
	Connector for external red and green warning lamps according to VDE 0104	230V, 60W
	Mains power	230V, 50Hz/60Hz
Housing:	Plug in unit, 7U	
	Dimensions (mm): W * H * D	483x311x520
	Weight	45kg

	CAR Tester I	CAR Tester II	CAR Tester III
Power supply switch:			
Max. Output current:			
Continuous mode	35A _{DC}	100A _{DC}	200A _{DC}
Short time, duty cycle 5%	50 A _{DC}	150 A _{DC}	360 A _{DC}
Max. Reverse voltage		800V	
Trigger-input	Built-in	(connectable to extern	al modules)
Artificial Network:			
Nominal operating voltage	0V 56V		
Series inductance	5μH, 35A _{DC}	5μH, 100A _{DC}	5μH, 200A _{DC}
Load impedance $0.1\mu\text{F} + 50\Omega$			
Load resistor R _s , switchable		10Ω , 20Ω , 40Ω	
Connector for external load resistor, 2Ω	Built-in		
Measurement probe:	Transient immunity test:		
Impulse voltage divider 4.95k Ω /50 Ω	100:1, 1kV _p		
Impulse current measuring resistor	mpulse current measuring resistor Impulse current measuring resistor		resistor

Burst:	Designed for generation of test pulses #3a / #3b according to ISO 7637-2	
Amplitude of burst output voltage	± (25V 800V) ± 10% adjustable	
Waveform	t4 description to the text of	
Rise time, t _r	5.0ns ± 30%	
Pulse duration, t _d	150ns ± 30%	
Source resistance	$R_1=50\Omega$	
Polarity	pos./neg./alt (switchable)	
Pulse period t ₁	1.0µs 1.0ms adjustable	
Burst duration t ₄	0.1ms 25ms adjustable	
Burst period t ₅	10ms 1000ms adjustable	
Max. continuous burst frequency	uency 20kHz	

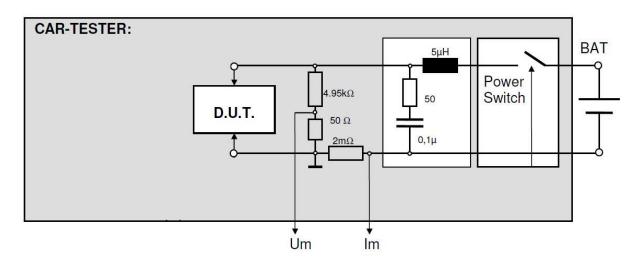


Surge	Designed for generation of test pulses #1, #2a according ISO 7637-2
Charging voltage	± (0V600V) ± 10% adjustable
Max. stored energy	18J
Max. charging time	0.5sec 5.0sec
Polarity	positive, negative switchable
Source resistance	2Ω , 4Ω , 10Ω , 20Ω , 50Ω or 90Ω , switchable
Only with negative pulse polarity:	
Power supply disconnection time, t_2	3 200ms ± 20%
Trigger delay, t_3	< 100µs

PFN 1		
	<i>Waveform 1/2000μs</i> Pulse # 1	U ▲ 90 %
	Rise time, t_r 1.0 μ s +0 μ s/-0.5 μ s	 ← tr →
	Pulse duration, t_d 2000μs ± 20%	10 %
Wavefori	m 3/2000μs or 3/1000μs Puls # 1	10 %
	Rise time, t _r 3.0µs +0µs/-1.5µs	
	Pulse duration, t_d 2000μs/1000μs ± 20%	

PFN 2a	
Waveform 1/50μs Puls # 2a	U0 U
Rise time, t _r 1.0μs +0μs/-0.5μs	10%
Pulse duration, t_d 50μs ± 20%	< 13 ** 't₁>
	90 %

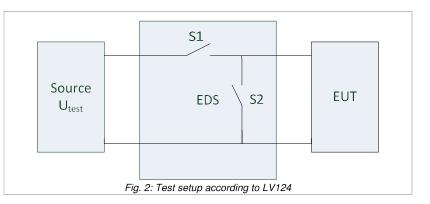
Transient Emission Test	Power Switch Transients, according to ISO 7637-1/2 Measurement of voltage and current transient while switching the power supply on and off		
Load resistor, switch able R_s 10Ω , 20Ω , 40Ω , ext. $>2\Omega$	U ★ ← toff → ton →		
Switch-off time, t _{off} , adjustable 1 1000s	Uo Period		
Switch-on time, t _{on} , adjustable 1 1000ms	t		
Number of Pulses, adjustable 1 1000	 		



SCHEMATIC DIAGRAM CAR-TESTER

OPTIONS:

CDN 500	Capacitive coupling clamp
	for capacitive coupling of BURST pulses to screened cables


μs-Switch Type EDS

Simulation of micro cut-offs and discharge of load currents in automotive supply networks

The relating standards: LV 124 E10 LV 124 E13 Renault 36-00-808L 6.1.10 PSA B21 7110 7.1.13²⁾ Audi BT-LAH XXX.915.181.XX⁴⁾

The µs-Switch Type EDS is a very fast electronic switch combination for testing according to several automotive test standards. Originally designed for the LV124 standard, the EDS flexibility extends its use to many manufacturer specific standards.

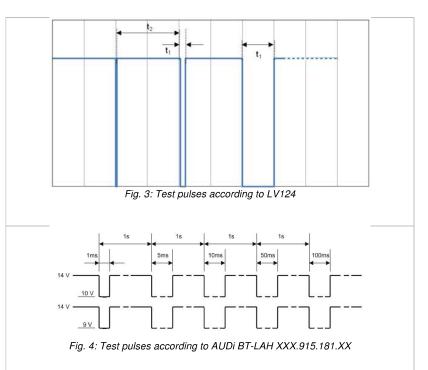
LV124 E10: Short interruptions on supply lines – Tests according to this standard can be run in manual mode or as an automated sequence.

LV124 E13: Short interruptions on signal lines – Tests according to this standard can be run in manual mode or as an automated sequence.

Renault 36-00-808L EQ/IC 04: Resistance to power supply micro-interruptions — Tests according to this standard can be run in manual mode or as an automated sequence.

PSA B21 7110 EQ/IC 04: Resistance to short interruptions of the power supply — Test according to this standard can be run in manual mode or as an automated sequence.

Audi BT-LAH XXX.915.181.XX: Short interruptions and start-up behaviour – Tests according to this standard can be run in manual mode or as an automated sequence.


The switches have to perform a series of switching on/off the supply voltage or to switch between two voltage levels within different time periods t_1 of minimum 10 μ s up to 2s. The different standards define test levels and pulse and pause durations.

The ability of generating very short voltage drops with $10\mu s$ duration requires a very fast rise- and fall-time of the electronic switches. The LV124 standard specifies the rise- and fall-time t_r / t_f as 10% of the desired testing cycle t_1 .

The EDS has two controlling trigger outputs, signalling the switching of the two switches S1 and S2. To perform a test, the EDS offers manual mode testing (operator controlled switching) sequencing mode. In sequencing mode the EDS display guides through a simple test setup procedure.

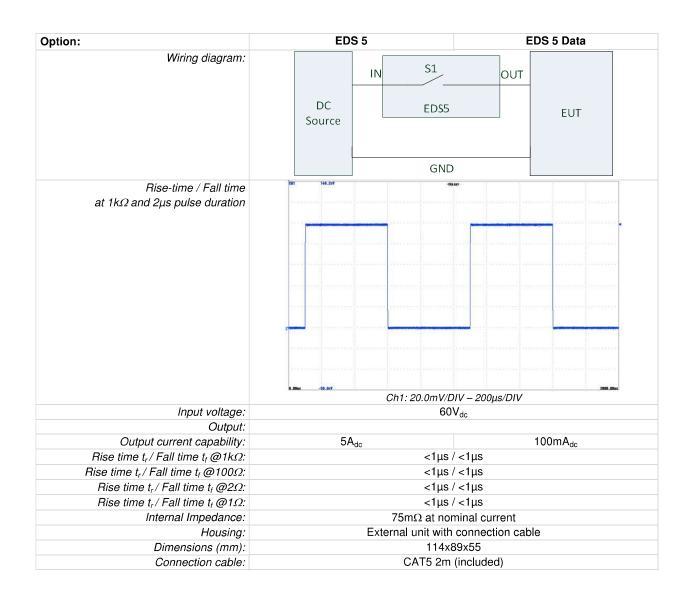
An optionally available software package SPS-Automotive offers a PC based automated test solution with test modules for the according standards.

With the external trigger inputs for S1 and S2 the tests can be performed with an external control unit.

TECHNICAL DATA EDS

LECHNICAL DATA EDS		
	EDS 100	
Input:		
Input voltage:	60V _{dc}	
External trigger input:	524V _{dc}	
Output:		
Output current capability:	100A _{dc}	
Internal Impedance:	10mΩ at nominal current	
Rise time t_r / Fall time t_f @1 $k\Omega$:	<1μs / <10μs	
Rise time t_r / Fall time t_t @100 Ω :	<1µs / <1µs	
Rise time t_r / Fall time t_f @2 Ω :	<1µs / <1µs	
Rise time t_r / Fall time t_f @1 Ω :	<1µs / <1µs	
Min. adjustable pulse width	2μs	
(individual operation):		
Pulse width inverse operation:		
Trigger output:	TTL level (+5V)	
Protection circuits:	overload / short circuit / overtemperature overvoltage limitation for inductive loads ³⁾	
Interface:	IEEE488 / RS232	
Power supply:	230V (±10%, 50Hz 60Hz)	
Protection:	2A	
Contactor type:	Schuko	
Ambient temperature:	0° C up to 40°C	
Housing:	19"-plug-in unit; 5U	
Dimensions (mm):	485x455x223	
Weight:	15,5kg	
Cooling:	temperature-controlled fans	

Option:		Calibration Kit LV1	124
Wiring diagram calibration:		S1_	OUT
	DC Source	EDS S2	Calibration Kit
Control:		built-in software fund	tion
Resistor types:	high preci	sion non-inductive meas	
	power capability / accuracy		
1kΩ:	1 Watt / 1%		
100Ω:	5 Watt / 1%		
1Ω:	125 Watt / 1%		
Monitoring output:	BNC Connector		
Dimensions (mm):	114x64x55		



Pulse Generator type LDG

The relating standards:

ISO 7637-2

Test pulse 5

Test pulse 7

The Load Dump Generator (LDG) generates the pulses #5 according to ISO 7637-2.

These pulses may occur in the event of a discharged battery being disconnected while the alternator is generating charging current and with other loads remaining on the alternator circuit at this moment.

TECHNICAL DATA

Туре	LDG 35/I	LDG 100/I	LDG 200/I
Application:	Generation the pulses 5 according to ISO 7637-2		
Idle output voltage:	40V 200V		
Pulses:			
Pulse width:	40ms / 50ms / 6	60ms / 75ms 400ms (re	solution 25ms)
Pulse rise time:		5 10ms	
Pulse accuracy: (calibration cycle: 1 year)		esponding to ISO 7637-2:2 ed at battery voltage $\rm U_{B}$ / $\rm L$	
Polarity:		Positive	
Max. energy:		2250J	
Repetition rate:	max. 40s		
Source resistor:	0.5Ω 12.5Ω (resolution 0.1Ω)		Ω)
Battery supply:			
Max. voltage:	60V	60V	60V
Cont. current :	35A	100A	200A
Power supply:	230V/400V (+10% -10%, 50Hz 60Hz)		
Protection:		6.3A	
Contactor type:	CEE-plug		
Ambient temperature:	0°C +40°C		
Housing:	19"-plug-in unit (6U), colour light grey (RAL 7035)		
Dimensions:	approx. H=267mm; W=483mm; D=600mm		
Weight:	approx. 60kg		

OPTIONS:

Option Interfaces:	IEEE488 / RS232
Option Pulse #7	Special mains supply voltage
Option Load Dump Supressor Network type LDSN	Diode surpression network that can be adjusted via plug-in jumpers from $22V_{DC}$ to $178V_{DC}/Resolution$: $22V_{DC}$

High Voltage Tester HVT 1000

The relating standards: ISO 16750-2 ISO 21848.5

The High Voltage Tester HVT 1000 can be used for withstand voltage tests and insulation resistance tests according to ISO 16750-2 (see table below).

TECHNICAL DATA

Applications:	Withstand voltage test according to ISO 16750-2 (4.11) or ISO/CD 21848.5 (4.10) Insulation resistance test according to ISO 16750-2 (4.12) or ISO/CD 21848.5 (4.10)	
Nominal voltage:	$\begin{array}{l} U_{AC} \colon 100 \; \; \; 1000 V_{AC} / \; I_{nom} \colon 0.5 m A_{AC} / \; I_{max} \colon 5 m A_{AC} \\ U_{DC} \colon 100 \; \; \; 1000 V_{DC} / \; I_{nom} \colon 0.5 m A_{DC} / \; I_{max} \colon 5 m A_{DC} \end{array}$	
Amplitude resolution:	100mV	
Load regulation:	0 0.5mA: < 3% / 0.5 5mA: < 25%	
Frequency range:	50Hz 60Hz	
Protection circuits:	Overload and Short circuit	
Input voltage: (for max. output voltage)	5V _p	
Input impedance:	approx. 10kΩ	
Overcurrent detection:		
Detection level:	0.1mA 5mA	
Operating mode:	AC or DC	
Action:	Switch off / visual display / acoustic warning	
Low resistance detection:		
Detection level:	1ΜΩ 100ΜΩ	
Operating mode:	DC	
Action:	Switch off / visual display / acoustic warning	
Interface:	IEEE488	
Power supply:	230V (+6% -10%) 50Hz 60Hz (fuse at 2A)	
Ambient temperature:	0°C +40°C	
Housing:	Sub-drawer system in 19"-plug-in-unit (3U)	
Dimensions:	approx. H=135mm; W=483mm; D=450mm	
Weight:	approx. 12kg	

Relay Field Set

The relating standards: ISO 16750-2 FORD Cl270

The Relay Field Set can be used for short-circuit-tests of load circuits and supply-switching-tests in road vehicles.

TECHNICAL DATA

Туре	R1/8	R32/2
Applications:	FORD CI270: Immunity to Voltage Overstress ISO 16750-2: Open Circuits	ISO 16750-2: Open Circuits, Signal Circuits Mitsubishi: Supply Voltage Intermittent Test
Relays:	8 per unit	2 per unit
Contacts:	1 input / 1 open contact / 1 close contact (per relay)	
DC values:	U _{max} : 42V _{DC} / I _{max} : 1A _{DC}	U_{max} : $42V_{DC} / I_{max}$: $32A_{DC}$
Switching time:	app. 200 300μs at 24V/1A	app. 500ms at 13.5V/30A
Connection:	D-SUB 25pole plug	panel-mount socket
Protection circuit:	Overcurrent	
Control switching state:	Menu or interface controlled	
Interface:	IEEE488	
Power supply:	230V (+6% -10%) 50Hz 60Hz (fuse at 2A)	
Ambient temperature:	0°C +40°C	
Housing:	Sub-drawer system in 19"-plug-in-unit (3U) colour light grey (RAL 7035)	
Dimensions(mm):	approx. 135x483x450	
Weight:	approx. 10kg	

Test Pulse Generator type TDG/Ford

The relating standards: Ford CI 220 Ford CI 260

The Test Pulse Generator TDG/Ford can be used for testing the immunity against Transient Disturbances CI 220 / CI 260.

TECHNICAL DATA

Applications:	Immunity from Transient Disturbances CI 220 / A1, A2, B1, B2 Immunity to Voltage Dropout CI 260 (Random Bounce)			
Input voltage:	12 14V _{DC}			
Output:	Puls CI 220 A1, A2, C Puls CI 220 B1, B2 Puls CI 260 F			
Hour meter:	Count-up (100h) with reset function			
Interface:	IEEE488			
Power supply:	230V (+10% -10%) 50Hz 60Hz			
Protection:	2A			
Ambient temperature:	0°C +40°C			
Housing:	Sub-drawer system in 19"-plug-in unit (3U) colour light grey (RAL 7035)			
Dimensions:	approx. H=135mm; W=483mm; D=450mm			
Weight:	approx. 15kg			

"Spitzenberger & Spies offers extra protection for expensive prototype cars"

High currents require extra protection devices. Thinking about luxury and upper class automobiles, currents up to 800A for the initial motor startup are necessary. Everybody can imagine, in which dimensions a simulation system for automotive supply networks has to be.

The relating standards:
ISO 7637
ISO 16750-2
ISO 21848
BMW GS 95002
and many manufacturers test
specifications

Taking a fully equipped modern limousine as an example, many different power consuming units are on board. Motoric devices as well as high speed heating systems for front windows and lots of other appliances. All of them require immediately high currents for their desired operation.

At the prototyping cycle of current cars in in-house testing facilities (according to ISO 7637 and lots of manufacturer specific test regulations) a programmable DC power supply source with a very high current capability, very short rise time (+/-), very low internal resistance and a very high peak power capability is absolutely necessary.

A well-known representative of such a voltage source is the PAS 15000 GN/Kfz, able to deliver short time currents far above 1000A. With such a simulator devices with high-energy needs can be tested also.

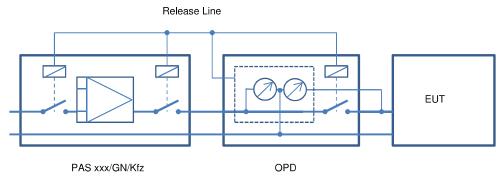
During any test run the protection of the (mostly expensive) prototype against overvoltage must be most important.

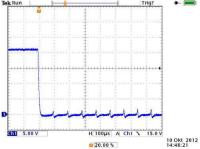
In any case of fault condition the supply source must be prevented from delivering power into the prototype system. If not, uncontrollable damages of the system up to burning fire can happen. Spitzenberger & Spies has developed an **overvoltage protection device OPD** suitable for the above mentioned purpose. It is offered as an optional unit for the well-proved Spitzenberger automotive supply simulator series PAS xxx GN/Kfz.

The functional principle of the OPD is a mechanical power switch with a monitoring and supervising unit. This switching unit is located between the simulator and the EUT.

To afford maximum security the monitoring of the output voltage is set up as a redundant system. On the one hand the output voltage is supervised directly at the EUT through external sense lines. On the other hand the current flow through the protection diodes of the supervising unit is analyzed. The OPD output is enabled only if both monitoring units evaluate "ok".

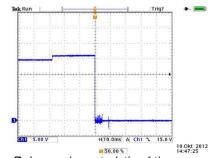
Additionally the polarity of the output voltage is supervised.





The release line controls the cut-off switches inside the OPD and in the voltage input of the simulator

The main function of the electronic protection is to prevent the EUT from any damage until the mechanical switches have cut off the voltage. This duration is typically 20-30ms. The components inside this electronic protection must have an improved quality to withstand the voltage and power delivered to the EUT until the mechanical switches have released.



Release characteristic of the electronic protection (100µs/DIV)

Only one measured difference from the reference values is necessary to active the protection sequence.

In any case of fault the electronic monitoring unit activates immediately a multi-stage protection sequence.

Within μ s an electronic protection cuts off the voltage to shield the EUT until the mechanical protection switch has released (typically 20-30 ms duration). The supply lines between EUT, OPD and the automotive supply simulator are disconnected, the whole system is de-energized.

Release characteristic of the mechanical switch (10ms/DIV)

To guarantee a perfect protection the functionality of the protection unit is tested automatically at each startup (Power-On Self-Test).

A manual function test can be performed at each time using the according front panel buttons.

As a reminder for the operator the output of the simulator is locked until the function test of the OPD is stating "OK". Only a passed function test is releasing the output of the simulator and the OPD.

The diagrams above show the typical switch-off duration of the OPD's electronic protection on the one hand and the release duration of the mechanical switches on the other hand.

The result is: The Overvoltage Protection Device is the perfect bodyguard for expensive EUT's.

PAS series of 4-Quadrant Amplifiers

THE REAL 4-QUADRANT AMPLIFIER

- ~ Extremely low harmonic distortion even under very non-linear load conditions
- \sim Very fast slew rate > 52V/ μ s (rise time < 5 μ s at 230V_{rms} as required by IEC/EN 61000-4-11)
- ~ Operates from DC up to 5kHz large signal bandwidth (-3dB) optional up to 30kHz
- ∼ Small signal bandwidth up to 50kHz or 100kHz
- ~ High long-term overload characteristic (up to 1-hour)
- ~ High short-term overload characteristic (for 5 ... 10mins.)
- ∼ Very high peak-load ability (up to 5ms)
- ~ Very low internal resistance

THE REFERENCE SOURCE FOR ALL APPLICATIONS

THE REAL 4-QUADRANT AMPLIFIER

Compliance with the requirements of the European EMC directive requires a statement of "product conformance" to a variety of emission and immunity specifications. These specifications define not only the type of test, but also the technical requirements for the test instrumentation. In particular, in the field of low-frequency conducted phenomena, an AC/DC-voltage source is required for almost all types of test. In order to comply with these requirements a 4-quadrant amplifier has been developed which is based upon a linear push-pull design. Some of the remarkable features of this amplifier design include it's ironless output stage, extensive use of negative feedback over all amplifier stages, an extended frequency range and a very low internal resistance.

FIELD OF APPLICATION

Extremely low harmonic distortion

EUT's with switched-mode power supply and non-linear current consumption (Fig. 1) need a very stable voltage source. The non-linear current characteristic of EUT's with peak current flow in comparison to the harmonic limits according to the standard IEC/EN 61000-3-2 are shown in Fig. 2.

The voltage source meets the extremely rigorous requirements of the standard IEC/EN 61000-3-2, even under very non-linear load conditions.

The waveshape of the output voltage is stable at any time (Fig. 3). The analysis of the harmonic content of the voltage source output signal when connected to a non linear load shows Fig. 4.

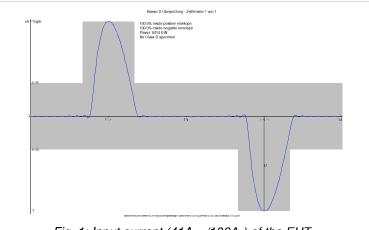


Fig. 1: Input current (41A_{rms}/106A_p) of the EUT

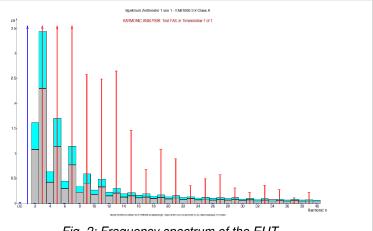
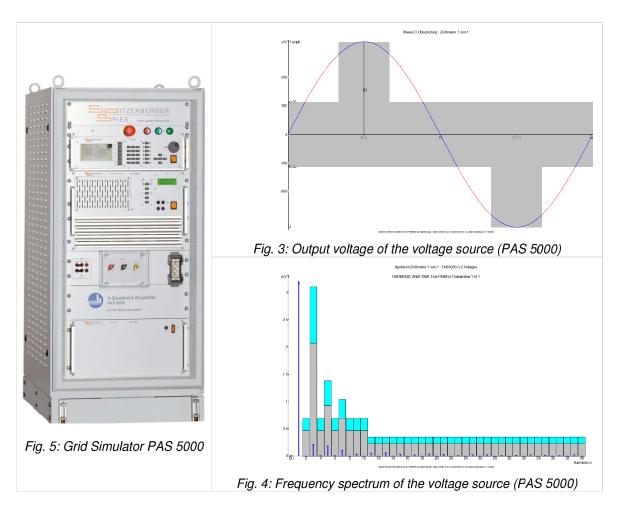



Fig. 2: Frequency spectrum of the EUT

Very low internal resistance

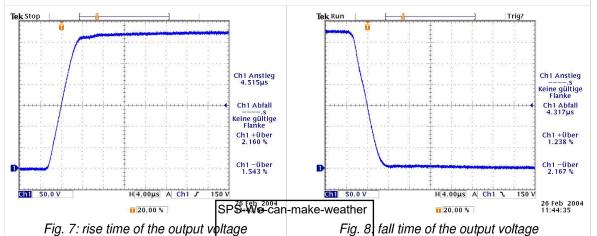
The extremely low internal resistance of the amplifier guarantees a full compliance measurement according to IEC/EN 61000-3-3 source specifications, even under dynamic load conditions.

Testconditions: 230 V / 50 Hz / Phase: L1 / Observations: 3 x 10 min / Ztest: (0.40+j0.25) Ohm

FLICKER: Test FAIL! Max. permitted Imp.: (0.094+j0.059) Ohm

Time	Pmax	Pst	Sliding Plt	d(t)>3.30% [s]	dmax [%]	dc [%]	PASS	FAIL
12:51:28 13:01:28 13:11:28	113.300 24.060 19.660		2.6250 2.3970 2.3570	-,	5.573 2.541 2.366	0.096		X X
Limits:	Limits: 1.0		0.650	0.500	4.000	3.300		
Plt: 1.5530	Plt: 1.553090 (calculated over 12 periods)							
Evaluated	Evaluated: PST							

		F	LICKER: S	Source test PAS	S!			
Time	Pmax	Pst	Sliding Plt	d(t)>3.30% [s]	dmax [%]	dc [%]	PASS	FAIL
12:51:28 13:01:28 13:11:28	0.001	0.0550 0.0260 0.0230	-,	-,	0.087 0.108 0.126		Х	
Plt: 0.025	377 (calcula	ated over 1		· ·	0.120	•	^	


Fig. 6: Flicker measurement with photocopier as the EUT

Geprüft mit EMC test software V2.3f / PAS5000 von Spitzenberger + Spies GmbH & Co. KG, Schmidstr 32-34, D-94234 Viechtach, 11.10.2004

Very fast rise and fall time

Due to the very fast slew rate of $>52V/\mu s$ the PAS is fully compliant according to the requirements of IEC/EN 61000-4-11 in practice.

Extremely high loadability

150% of rating is available in the case of a real load. Amplifier stability is absolutely assured when operating with either inductive or capacitive loads.

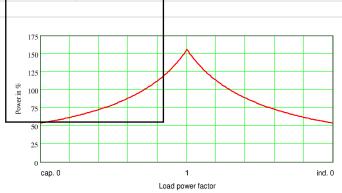



Fig. 9: PAS Performance characteristic

DC-Simulation

DC Signals can easily be generated using the directly coupled ironless amplifier output-stage

All test devices requiring a DC content within their input current can be supplied without problems.

TECHNICAL DATA:

			PAS Series		
Nominal vo	oltage	AC	$135V_{rms}$ / $270V_{rms}$		
			±191V / ±382V		
Voltage adjustment			depending on oscillator used		
Load regul	ation		Max. / Typ.		
	135V / D	C 450Hz	0,5% / 0,2%		
		Hz 5kHz	2,0% / 1,0%		
		C 450Hz	0,3% / 0,1%		
)Hz 5kHz	0,6% / 0,2%		
Gain stabil	ity	- 10min:	<0.2% at constant load and temperature		
		- 8h	<0.5% at constant load and temperature		
Line regula	ation		< 1.5x10 ⁻⁴ per 10V line-voltage change		
Frequency	range		DC 5kHz large signal bandwidth (-3dB)		
			DC 50kHz small signal bandwidth		
Slew rate			$>52 V/\mu s$ (rise time $<5 \mu s$ at 230 V_{rms} according to IEC/EN 61000-4-11)		
Harmonic (distortion		Max. / Typ.		
	135V / D	C 450Hz	0,3% / 0,1%		
		Hz 5kHz	2,5% / 1,5%		
		C 450Hz	0,1% / 0,05%		
)Hz 5kHz	0,6% / 0,3%		
Protection			Overload / Short Circuit / Over temperature		
Input	Λ	Max. voltage	$\pm 5 V_{ m p}$		
		Impedance	approx. 8kΩ		
Internal co	ntrol source	(optional)			
		Type	DDS2		
		Wave form	Sine wave, DC		
	Amplitud	le resolution	100mV		
	Frequ	uency range	10Hz 5kHz		
	Frequenc	y resolution	100mHz		
Ambient te	mperature		0°C up to 40°C		
Options					
01: IEEE 48			Not required in combination with control unit type SyCore		
•	voltage mon		(electrically isolated)		
	current moni	tor	(electrically isolated)		
10: Internal compensati			available		

Remarks:

- 1) at nominal voltage and $\cos \varphi > 0.7$
- 2) at nominal voltage
- 3) for approx. 5 ... 10mins; duty cycle 1:9
- 4) for approx 2 ... 3ms
- 5) Replaces standard range 0 ... $135V_{rms}(\pm 191V_{DC})/0$... $270V_{rms}(\pm 382V_{DC})$
- 6) Max. voltage between earth and ground of the amplifier output
- 7) To increase the output power of an amplifier, up to three similar amplifiers may be connected in parallel
- 8) With measurement adaptation to PAS
- 9) At 230V input voltage

			PAS 1000	PAS 2500	PAS 5000
Power AC 1) 9)		- continuous	1000VA	2500VA	5000VA
		- approx. 1h	1500VA	3750VA	7500VA
Power DC ^{2) 9)} - continuous		1000W	2500W	5000W	
		- approx. 1h	1500W	3750W	7500W
Short-time po			2000VA	5000VA	10000VA
Peak power 1)	4)9)	- at 135V	3200VA _p	10500VA _p	21000VA _p
		- at 270V	6400VA _p	21000VA _p	42000VA _p
Digital instrun		Voltage range		300V	
Measuring rar	nges	Current range	20A	40A	80A
		Accuracy Voltage	Max. / T	yp. (of measured value	±2 digit)
	D	C; 45Hz 450Hz		0,5% / 0,2%	
15	5Hz 45I	Hz;450Hz 5kHz		1,0% / 0,4%	
		Accuracy Current	Max. / t	yp. (of measured value	±2 digit)
	D	C; 45Hz 450Hz		0,8% / 0,4%	
15	5Hz 45I	Hz;450Hz 2kHz		1,6% / 0,8%	
		2kHz 5kHz	1,6% / 0,8%	5,0%	/ 3,0%
Power Supply	1		230V	230V	//400V
(+10% / -10%,	50Hz 60I	Hz)			
Protection:		16A	3 x 16A	3 x 20A	
Contactor type	e:		Schuko	CEE	
Housing		Amplifier	19", 4U	19", 5U	19",7U
	approx.	dimensions in mm	178x483x600	222x483x600	311x483x600
		Power Supply	included	19", 5U	19" 5U
	approx.	dimensions in mm	-	222x483x600	222x483x600
Weight	,	Amplifier (approx.)	45kg	30kg	45kg
	Powe	r Supply (approx.)	-	85kg	100kg
Options					
11-33Z:	Additional	voltage range	$033V_{rms}(\pm 47V_{DC})$		
11-56Z:	Additional	voltage range	$0 \; \; 56 V_{rms}(\pm 79 V_{DC})$		
		voltage range	$0 \dots 240 V_{ms}(\pm 339 V_{DC})$		
11-300: 5	Special vo	Itages 5)	$0 \dots 150 V_{ms}(\pm 212 V_{DC}) /$	$0 300 V_{rms}(\pm 424 V_{DC})$	
	Special vo additional	ltage and voltage range ⁵⁾	$0 \; \; 60 V_{\text{rms}}(\pm 85 V_{\text{DC}}) \; / \; 0 \; \; 150 V_{\text{rms}}(\pm 212 V_{\text{DC}}) \; / \; 0 \; \; 300 V_{\text{rms}}(\pm 424 V_{\text{DC}})$		
		DC-voltage range	0 +630V _{DC} In combina	ntion with option 11-300 or	11-300Z
		quency range	DC 15kHz (-3dB)		
13-30:	Special fre	quency range	DC 30kHz (-3dB)		
17-300: F	Floating or	utput ⁶⁾	300Vrms		
		eration mode ⁷⁾	(DC 5kHz / Only wi	th SyCore)	
		able internal	R:25mΩ 2Ω/Resolution		
	mpedance		L:25μH 3.2mH/Resolu		
28-540/C: \	Voltage tra	ınsformer ⁸⁾	Other voltages on reques	st	
29-xxx/C: H	High voltag	ge transformer ⁸⁾	1000V and above values	on request	

			PAS 7500	PAS 10000	PAS 15000	
Power AC 1) 9) - continuous		7500VA	10000VA	15000VA		
- approx. 1h		11250VA	15000VA	22500VA		
Power DC 2) 9))	- continuous	7500W	10000W	15000W	
		- approx. 1h	11250W	15000W	22500W	
Short-time po	ower ^{1) 3) 9)}		15000VA	20000VA	30000VA	
Peak power 1) 4) 9)	- at 135V	31500VA _p	43750VA _p	70000VA _p	
		- at 270V	63000VA _p	87500VA _p	140000VA _p	
Digital instrui		Voltage range		300V		
Measuring ra	nges	Current range	150A	200A	250A	
		Accuracy Voltage	Max. / T	yp. (of measured value	±2 digit)	
	E	C; 45Hz 450Hz		0,5% / 0,2%		
1.	5Hz 45	Hz;450Hz 5kHz		1,0% / 0,4%		
		Accuracy Current	Max. / ty	γp. (of measured value	±2 digit)	
		C; 45Hz 450Hz		0,8% / 0,4%		
1.	5Hz 45	Hz;450Hz 2kHz		1,6% / 0,8%		
2kHz 5kHz			5,0% / 3,0%			
Power Supply (+6% / -10%, 50Hz 60Hz)			230V/400V			
Protection:			3 x 32A	3 x 40A	3 x 63A	
Contactor type:		CEE				
Housing		Amplifier	19", 10U	19" 17U	19", 23U	
	approx.	dimensions in mm	444x483x600	755x483x600	1022x483x600	
		Power Supply	19", 10U	19", 12U	19", 12U	
	approx.	dimensions in mm	444x483x600	533x483x600	533x483x600	
Weight		Amplifier (approx.)	60kg	80kg	120kg	
	Powe	er Supply (approx.)	200kg	220kg	240kg	
Options						
11-33Z:	Additional	voltage range	0 33V _{rms} (±47V _{DC})			
		voltage range	$0 \dots 56V_{rms}(\pm 79V_{DC})$			
		voltage range	0 240V _{rms} (±339V _{DC})			
	Special vo	0	$0 \dots 150 V_{ms} (\pm 212 V_{DC}) /$			
	Special vo additional	oltage and voltage range ⁵⁾	$0 \dots 60V_{rms}(\pm 85V_{DC}) / 0 \dots 150V_{rms}(\pm 212V_{DC}) / 0 \dots 300V_{rms}(\pm 424V_{DC})$			
11-630DC:	Additional	DC-voltage range	0 +630V _{DC} In combination with option 11-300 or 11-300Z			
	•	equency range	DC 15kHz (-3dB)			
		equency range	DC 30kHz (-3dB)			
	7-300: Floating output 6)		300Vrms			
		oeration mode ⁷⁾	(DC 5kHz / Only wit	h SyCore)		
	impedanc		R:25mΩ 2Ω/Resolution:25mΩ L:25μH 3.2mH/Resolution:25μH			
28-540/C:	Voltage tr	ansformer ⁸⁾	Other voltages on reques	t		
		ge transformer 8)	1000V and above values	on request		

			PAS 20000	PAS 25000	PAS 30000	
Power AC 1) 9	9)	- continuous	20000VA	25000VA	30000VA	
		- approx. 1h	30000VA	37500VA	45000VA	
Power DC 2) 9	9)	- continuous	20000W	25000W	30000W	
		- approx. 1h	30000W	37500W	45000W	
Short-time po	ower ^{1) 3) 9)}		40000VA	50000VA	60000VA	
Peak power) 4) 9)	- at 135V	100000VA _p	115000VA _p	126000VA _p	
		- at 270V	200000VA _p	230000VA _p	252000VA _p	
Digital instru		Voltage range		300V		
Measuring ra	inges	Current range	300A	400A	500A	
		Accuracy Voltage	Max. / T	yp. (of measured valu	e ±2 digit)	
	E	C; 45Hz 450Hz		0,5% / 0,2%		
1	15Hz 45	Hz;450Hz 5kHz		1,0% / 0,4%		
		Accuracy Current	Max. / t	yp. (of measured value	e ±2 digit)	
	E	C; 45Hz 450Hz		0,8% / 0,4%		
1	15Hz 45	Hz;450Hz 2kHz		1,6% / 0,8%		
		2kHz 5kHz		5,0% / 3,0%		
Power Supply (+6% / -10%, 50Hz 60Hz)		230V/400V				
Protection:		3 x 80A	3 x 100A	3 x 125A		
Contactor type:		CEE				
Housing		Amplifier	19", 33U	19", 39U	19",46U	
	approx.	dimensions in mm	1467x483x600	1733x483x600	2042x483x600	
		Power Supply	19", 2x12U	19", 2x12U	19", 2x12U	
	approx.	dimensions in mm	1066x483x600	1066x483x600	1066x483x600	
Weight		Amplifier (approx.)	160kg	200kg	240kg	
_		er Supply (approx.)	2 x 220kg	2 x 230kg	2 x 240kg	
Options			-		-	
11-33Z:	Additional	voltage range	0 33V _{rms} (±47V _{DC})			
11-56Z:	Additional	voltage range	0 56V _{rms} (±79V _{DC})			
11-240Z:	Additional	voltage range	0 240V _{ms} (±339V _{DC})			
11-300:	Special vo	oltages ⁵⁾	0 150V _{ms} (±212V _{DC}) /	$0 \dots 300 V_{rms} (\pm 424 V_{DC})$		
11-300Z:		oltage and voltage range 5)	$0 \dots 60 V_{rms} (\pm 85 V_{DC}) / 0 \dots 150 V_{rms} (\pm 212 V_{DC}) / 0 \dots 300 V_{rms} (\pm 424 V_{DC})$			
11-630DC:	Additional	DC-voltage range	0 +630V _{DC} In combination with option 11-300 or 11-300Z			
13-15:	Special fro	equency range	DC 15kHz (-3dB)			
13-30:			DC 30kHz (-3dB)			
17-300:	7-300: Floating output 6)		300Vrms			
21:	Parallel o	peration mode 7)	(DC 5kHz / Only wi	th SyCore)		
24-P:	Programn	nable internal e	R:25mΩ 2Ω/Resolution:25mΩ L:25μH 3.2mH/Resolution:25μH			
28-540/C:		ansformer ⁸⁾	Other voltages on reques	st		
29-xxx/C:		ge transformer 8)	1000V and above values	on request		

			PAS 40000	PAS 50000	PAS 60000	
Power AC 1) 9) - continuous		40000VA	50000VA	60000VA		
- approx. 1h		60000VA	75000VA	90000VA		
Power DC 2) 9)		- continuous	40000W	50000W	60000W	
		- approx. 1h	60000W	75000W	90000W	
Short-time po	ower ^{1) 3) 9)}		AV00008	100000VA	120000VA	
Peak power 1)	(4)9)	- at 135V	192000VA	225000VA	250000VA	
		- at 270V	384000VA	450000VA	500000VA	
Digital instrur		Voltage range		300V		
Measuring ra	nges	Current range	600A	800A	1000A	
		Accuracy Voltage	Max. / T	yp. (of measured value	±2 digit)	
	D	C; 45Hz 450Hz		0,5% / 0,2%		
1:	5Hz 45	Hz;450Hz 5kHz		1,0% / 0,4%		
		Accuracy Current	Max. / ty	p. (of measured value	±2 digit)	
		OC; 45Hz 450Hz		0,8% / 0,4%		
1:	5Hz 45	Hz;450Hz 2kHz		1,6% / 0,8%		
2kHz 5kHz			5,0% / 3,0%			
	/ (+6% / -	10%, 50Hz 60Hz)		230V/400V		
Protection:			On request	On request	On request	
Contactor type:			CEE			
Housing		Amplifier	On request	On request	On request	
	approx.	dimensions in mm	On request	On request	On request	
	Powe		On request	On request	On request	
		dimensions in mm	On request	On request	On request	
Weight		Amplifier (approx.)	On request	On request	On request	
	Powe	er Supply (approx.)	On request	On request	On request	
Options						
		voltage range	$0 \dots 33V_{rms}(\pm 47V_{DC})$			
		voltage range	0 56V _{rms} (±79V _{DC})			
		voltage range	0 240V _{ms} (±339V _{DC})			
	Special vo	0	0 150V _{rms} (±212V _{DC}) /			
		oltage and voltage range ⁵⁾	$0 \dots 60V_{rms}(\pm 85V_{DC}) / 0 \dots 150V_{rms}(\pm 212V_{DC}) / 0 \dots 300V_{rms}(\pm 424V_{DC})$			
		DC-voltage range	0 +630V _{DC} In combinati	tion with option 11-300 or	11-300Z	
		equency range	DC 15kHz (-3dB)			
		equency range	DC 30kHz (-3dB)			
	Floating o		300Vrms			
		oeration mode ⁷⁾	(DC 5kHz / Only wit	th SyCore)		
i	impedanc		R:25mΩ 2Ω/Resolution:25mΩ L:25μH 3.2mH/Resolution:25μH			
		ansformer ⁸⁾	Other voltages on reques	st		
29-xxx/C:	High volta	ge transformer 8)	1000V and above values	on request		

With a guaranteed future

Instead of many individual voltage sources, the use of a single universal voltage source is both efficient and economical. The PAS series of voltage sources are prepared to meet the requirements of additional standards such as:

IEC/EN 60146-1-1 IEC/EN 61000-2-2 IEC/EN 61000-4-4 IEC/EN 61000-4-5 IEC/EN 61000-4-8 IEC/EN 61000-4-11 IEC/EN 61000-4-13 IEC/EN 61000-4-14 IEC/EN 61000-4-17 IEC/EN 61000-4-27 IEC/EN 61000-4-28 IEC/EN 61000-4-29 IEC/EN 61000-4-34 IEC/EN 61131-2 IEC/EN 61496-1 IEC/EN 61800-3 IEC/EN 62040-2 SEMI F47-0706

Long life expectancy and high reliability

The PAS – series is the perfect programmable voltage source for all your test equipment and production line requirements.

Fig. 11: 3-phase Grid Simulator DM 30000

Control

To control the amplifier a range of different oscillators, including IEEE 488 control (e.g. SyCore, DDS units), are available.

AC-Current Amplifier Type DCS 5000/T

Applications:
Circuit Breaker testing
Coil testing
Magnetic field generation
Thermal testing
etc.

Top Facts:

- Nominal power at cos phi 0 (inductive) ... 1 ... 0 (capacitive)
- High power efficiency >90%
- Current accuracy of 1% of the adjusted value
- Harmonic distortion < 1%
- Small dimensions

TECHNICAL DATA

Output:				
Continuous power: 1)	5000VA at nominal current (800A range) 2000VA at nominal current (100A range)			
cos phi:	0 (inductive) 1 0 (capacitive) at nominal power			
Nominal current:	$100A_{rms} (V_{max.} : 20V_{rms})$ $800A_{rms} (V_{max.} : 6V_{rms})$			
Current accuracy:	1% of the adjusted value (10 100% of the current range)			
Efficiency:	> 90% at nominal power			
Frequency range	45Hz 100Hz			
Harmonic distortion: (at nominal current)	<1%			
Protection circuits:	Overload Open output Overtemperature			
Control:	Internal Control Unit DDS2 Front-Panel adjustment or IEEE-control			
Waveform:	Sine			
Current range:	100A / 800 A _{rms}			
Min. Current resolution:	14bit			
Frequency range:	45Hz 100Hz / Resolution 100mHz			
Time measurement:	0000 9999 s automatic Reset at current change			
Interface:	IEEE488 Optical CAN (for parallel operation only)			
Power Supply: Protection: Contactor type:	230V/400V (+10% -10%, 50Hz 60Hz) 3x16A CEE			
Ambient temperature:	0°C up to +40°C			
Housing:	2x19"-unit, colour light grey (RAL 7035)			
Dimensions:	2x(4U) each 178x483x600mm			
Weight:	Approx. 160kg			

Remarks:

¹⁾ Nominal Power at 230V supply voltage at 22°C

EV series Overview AC voltage amplifier

High frequency AC power amplifier system

The applications:

- Component testing
- Instrument testing

- ✓ High slew rate
- ✓ Wide frequency range
- Very low internal resistance
- ✓ Frequencies from 1.5kHz to 300kHz can be generated in laboratory and test systems
- Testing of wound components, capacitors and filters
- ✓ Undervoltages and overvoltage as well as frequency variations may be simulated
- Testing of electrical and electronic devices of all kinds (e.g. testing of high frequency measuring instruments)

TECHNICAL DATA

Туре	EV300	EV600	EV1200	
Power 1)				
Continuous power:	300VA	600VA	1200VA	
cos phi:	0.7 in	d 1 - 0.7 cap. at nominal p	ower	
Nominal Voltage:		0-150V _{rms} or 0-300V _{rms}		
Digital instrument:		3 ½ digit		
Voltage range:		400V		
Current range (optional):	2A	5A	10A	
	Max. /	Typ. (of measured value ±2	? digit)	
Accuracy Voltage:	15kHz-50kHz		2%	
	50kHz-100kHz		3%	
	100kHz-200kHz		6%	
	200kHz-300kHz	8%		
Accuracy Current (DC):		0,8% / 0,4%		
Supply:				
Power Supply (±10%, 50Hz 60Hz)	230	OV .	230V/400V	
Protection:	16	A	3x16A	
Contactor type:	Safety	[,] plug	CEE	
Housing:	19"-plug-in unit, colour light grey (RAL 7035)			
Dimensions (mm):	Amplifier incl. Power supply (5U) 265x540x550 Amplifier incl. Power supply (7U) 350x540x550		Amplifier (7U) Power supply (5U) 615x540x550	
Weight (approx.):	35kg	45kg	Amplifier 40kg Power Supply 60kg	

Remarks:

1) Nominal Power at 230V supply voltage

Туре	All EV Series			
Voltage adjustment:		depending on oscillator used		
Load regulation: 0 nominal load	Type FS: Type H: Type CuG: Type I:	1.5kHz - 50kHz < 6% 50kHz - 100kHz < 8% 15kHz - 50kHz < 4% 50kHz - 200kHz < 10% 45Hz - 4.5kHz < 5% 4.5kHz - 100kHz < 6% 45kHz - 100kHz < 4% 100kHz - 300kHz < 10%		
Gain stability:	10min: <0.2% at constant load and temperature 8h: <0.5% at constant load and temperature			
Frequency range:	Type FS: Type H: Type CuG: Type I:	1.5kHz - 100kHz (-3dB) 15kHz - 200kHz (-3dB) f1: 45Hz - 4.5kHz (-1dB) f2: 4.5kHz - 100kHz (-3dB) f1: 45kHz - 100kHz (-3dB) f2: 100kHz - 300kHz (-3dB)		
Harmonic distortion: (at nominal voltage)	Type FS: Type H: Type CuG: Type I:	1.5kHz - 50kHz < 3% 50kHz - 100kHz < 5% 15kHz - 50kHz < 5% 50kHz - 200kHz < 6% 45Hz - 4.5kHz < 1% 4.5kHz - 100kHz < 2% 4.5kHz - 100kHz < 5% 45kHz - 100kHz < 5% 100kHz < 300kHz < 8%	ŀľ	
Protection circuits:		Overload / Short circuit / Overtemperature		
Control:		Internal control source DDS-EV (optional)		
Waveform:		Sine		
Amplitude resolution:		100mV		
Frequency range:	Type FS: Type H: Type CuG: Type I:	1.5kHz - 100kHz (-3dB) 15kHz - 200kHz (-3dB) f1: 45Hz - 4.5kHz (-1dB) f2: 4.5kHz - 100kHz (-3dB) f1: 45kHz - 100kHz (-3dB) f2: 100kHz - 300kHz (-3dB)		
Frequency resolution:	0.1Hz / 1Hz / 10Hz (adjustable)			
Input:				
Input voltage: (for max. output voltage)		±5V _p		
Input impedance:		approx. 2kΩ		
Interface (optional):		IEEE488		
Ambient temperature:	0°C up to +40°C			

Options:	
Option 01:	IEEE488 Interface
Option 04:	Digital instrument current measurement
Option 06:	Output voltage monitor
Option 07:	Output current monitor
Option 11-a:	Special voltage ranges up to 0-600V _{rms} / replaces standard range
Option 11-b:	Special voltage ranges up to 0-999V _{rms} / replaces standard range
Option 18:	Special line voltages (110V 300V)
Option 22-300:	Voltage range switching e.g. 0-150Vrms /0-300Vrms
Option 22-11b:	Voltage range switching e.g. 0-400Vrms /0-800Vrms/ option 11-b included
Option 26-g:	Remote control connection (isolated) level: 5V to 24V(active low)/ control lines for: - Output (ON/OFF)/ voltage and frequency ranges - Source selection (internal / external) - Control of fixed frequencies: 25kHz/50kHz (only available in combination with variable Oscillator type DDS 2–EV) - DC-control input 0-10V control of amplitude and frequency (only available in combination with variable Oscillator type DDS 2–EV) - Manual voltage adjustment connection of an external ten-turn potentiometer/back side

4-Quadrant Amplifier type PAS 5000

Harmonic Performance demonstration

The relating standards: IEC/EN 61000-3-2 IEC/EN 61000-4-7

FIELD OF APPLICATION

For equipment intended to be connected to the 16A public low voltage network harmonic current limits are defined in the IEC/EN 61000-3-2.

In the normative annex A2 of this standard the requirements for the voltage source under load conditions are defined.

Point c) of the Annex A2 describes the limits of harmonic voltage components of the voltage source. The EUT has to be connected as in normal operation. This requirement has to be met during testing EUT's of classes A ... D (EUT type classification of the IEC/EN 61000-3-2).

Point d) describes the waveform (crest-factor!). The waveform crest-factor has to be taken in account, when testing EUT's of class C and D of this standard.

Note on figure A.1:

" $Z_{\rm S}$ (source impedance) and $Z_{\rm M}$ (measuring impedance) are not specified, but have to be sufficiently low to meet the requirements in Annex A.2. This must be verified with the measurement unit at the connection points to the EUT. For the value of ZM see IEC/EN 61000-4-7"

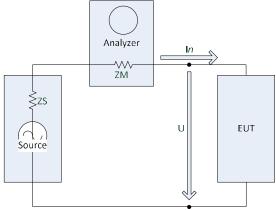


Fig. 1: Measurement setup acc. IEC/EN 61000-3-2

HARMONIC ANALYSIS OF THE EUT

For the harmonic performance demonstration of the PAS voltage source the following application was set up:

The PAS 5000 power amplifier was supplying an EUT with continuous power and non-linear current consumption.

PAS 5000 nominal power: 5kVA

PAS 5000 nominal current: 18.5A_{rms}

Whilst the demonstration the PAS 5000 was sourcing a current of $> 41.5A_{rms}$ and a peak current of $> 106A_p$.

The harmonic analysis table of the EUT's input current is shown in Fig. 2.

Fig. 3 shows the input current waveshape and Fig. 4 the frequency spectrum of the EUT during this test measurement.

 Voltage:
 230.18 Vrms
 325.49 Vpk
 THD=0.14 %
 THV=0.328 V
 POHV=0.062 V
 PWHD=0.17 %

 Current:
 41.528 Arms
 -106.093 Apk
 THD=107.03 %
 THC=30.342 A
 POHC=1.405 A
 PWHD=37.57 %

 Power:
 6414.9 W
 P1=6422.1 W
 9559.1 VA

Powerfactor: 0.671 CosPhi1: 0.984

Testconditions: EN 61000-3-2 / A14, f=50 Hz, Phase=L1, Range=64.00 A Time window cycles=16, Grouping of harmonics=off

HARMONIC ANALYSIS: Test FAIL in Timewindow 1 of 1

На	Value	Percent	Angle	EN61000-3-2 Class A	Margin	PASS	FAIL
DC	0.03 A	0.10 %	Deg			Х	
1	28.35 A	100.00 %	10.2 Deg			X	
2	0.01 A	0.04 %	-158.5 Deg	1.0800 A	-99.1 %	X	
3	23.76 A	83.82 %	-149.0 Deg	2.3000 A	933.2 %		X
4	0.02 A	0.06 %	26.8 Deg	0.4300 A	-96.3 %	X	
5	16.20 A	57.15 %	53.4 Deg	1.1400 A	1321.3 %		X
6	0.01 A	0.05 %	-150.7 Deg	0.3000 A	-95.3 %	X	
7	8.22 A	29.00 %	-98.9 Deg	0.7700 A	967.6 %		X
8	0.01 A	0.03 %	13.6 Deg	0.2300 A	-96.9 %	X	
9	2.59 A	9.12 %	139.1 Deg	0.4000 A	546.4 %		X
10	0.01 A	0.02 %	122.1 Deg	0.1840 A	-96.8 %	Х	
11	2.50 A	8.80 %	64.9 Deg	0.3300 A	656.2 %		X
12	0.01 A	0.03 %	-73.6 Deg	0.1533 A	-94.4 %	Х	
13	2.66 A	9.38 %	-72.7 Deg	0.2100 A	1166.2 %		X
14	0.01 A	0.02 %	97.9 Deg	0.1314 A	-95.3 %	X	
15	1.47 A	5.19 %	147.9 Deg	0.1500 A	881.3 %		X
16	0.00 A	0.01 %	-137.2 Deg	0.1150 A	-97.2 %	X	
17	0.69 A	2.42 %	69.6 Deg	0.1324 A	418.4 %		X
18	0.01 A	0.02 %	5.6 Deg	0.1022 A	-94.8 %	X	
19	1.10 A	3.87 %	-40.6 Deg	0.1184 A	826.6 %		X
20	0.00 A	0.02 %	-162.5 Deg	0.0920 A	-94.8 %	X	
21	0.90 A	3.18 %	177.6 Deg	0.1071 A	742.9 %		X
22	0.00 A	0.01 %	86.2 Deg	0.0836 A	-98.2 %	X	
23	0.36 A	1.29 %	64.9 Deg	0.0978 A	273.0 %		X
24	0.01 A	0.02 %	-0.7 Deg	0.0767 A	-93.3 %	X	
25	0.50 A	1.76 %	-8.0 Deg	0.0900 A	453.2 %		X
26	0.01 A	0.02 %	-155.3 Deg	0.0708 A	-90.8 %	X	
27	0.58 A	2.05 %	-146.2 Deg	0.0833 A	598.5 %		X
28	0.00 A	0.01 %	48.0 Deg	0.0657 A	-93.9 %	X	
29	0.32 A	1.13 %	79.6 Deg	0.0776 A	312.2 %		X
30	0.00 A	0.00 %	-9.1 Deg	0.0613 A	-99.1 %	X	
31	0.23 A	0.80 %	15.7 Deg	0.0726 A	211.9 %		X
32	0.00 A	0.01 %	-117.1 Deg	0.0575 A	-93.6 %	X	
33	0.37 A	1.32 %	-109.0 Deg	0.0682 A	447.7 %		X
34	0.00 A	0.01 %	80.5 Deg	0.0541 A	-93.1 %	X	
35	0.28 A	1.01 %	109.4 Deg	0.0643 A	343.3 %		X
36	0.00 A	0.00 %	-58.0 Deg	0.0511 A	-98.1 %	X	
37	0.12 A	0.42 %	18.4 Deg	0.0608 A	97.1 %		X
38	0.00 A	0.01 %	-77.1 Deg	0.0484 A	-93.9 %	X	
39	0.23 A	0.80 %	-72.9 Deg	0.0577 A	295.1 %		X
40	0.00 A	0.02 %	125.6 Deg	0.0460 A	-89.2 %	Х	

Geprüft mit EMC test software V2.31 / PASS000 von Spitzenberger + Spies GmbH & Co. KG, Schmidstr 32-34, D-94234 Viechtach, 11.10.20

Fig. 2: Harmonic analysis of the EUT current

CURRENT WAVESHAPE AND FREQUENCY SPECTRUM OF THE EUT

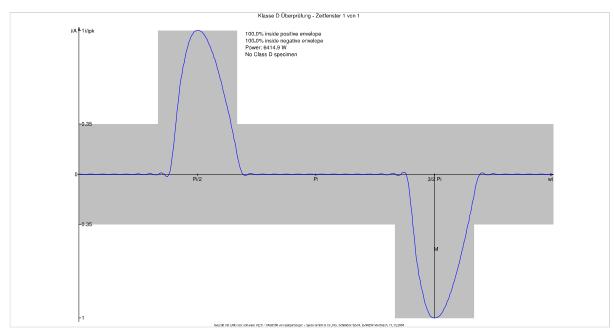


Fig. 4: Input current (41A_{rms}/106A_p) of the EUT

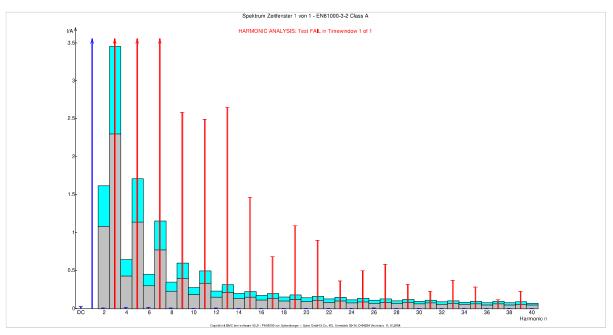


Fig. 5: Frequency spectrum of the EUT

VOLTAGE WAVESHAPE AND FREQUENCY SPECTRUM OF THE PAS 5000

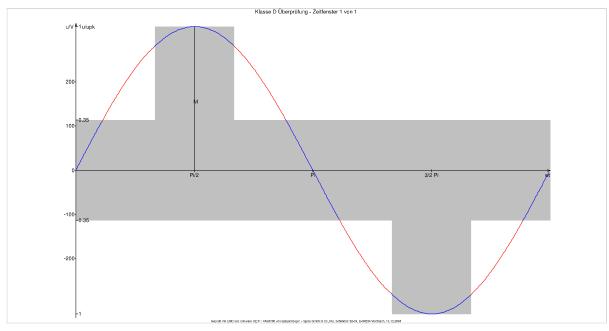


Fig. 6: Output voltage of the voltage source (PAS 5000)

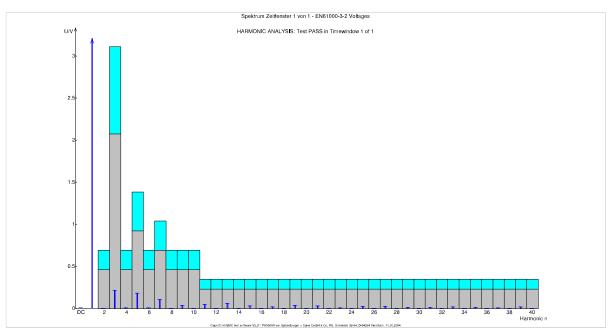


Fig. 7: Frequency spectrum of the voltage source (PAS 5000)

HARMONIC ANALYSIS OF THE PAS 5000

As defined in the standard IEC/EN 61000-3-2 A2 the voltage source shall meet the defined requirements. The test setup measurement shows the first class performance of the PAS 5000 voltage source.

Fig. 6 displays the voltage waveform during the test cycle, under load condition with a current of $> 41.5A_{rms}$ and a peak current of $> 106A_{D}$.

The voltage harmonic spectrum of the PAS 5000 under load shows Fig. 7.

The tabular analysis in Fig.8 as well as the graphical evaluation in Fig.7 attest the PAS 5000 full compliance to the requirements of the standard. The gap between the harmonic limit and the measured harmonic value is very comfortable.

Voltage:	230.18 Vrms	325.49 Vpk	THD=0.14 %	THV=0.328 V	POHV=0.062 V	PWHD=0.17 %
Current:	41.528 Arms	-106.093 Apk	THD=107.03 %	THC=30.342 A	POHC=1.405 A	PWHD=37.57 %
Power:	6414.9 W	P1=6422.1 W	9559.1 VA			

Powerfactor: 0.671 CosPhi1: 0.984

Testconditions: EN 61000-3-2 / A14, f=50 Hz, Phase=L1, Range=64.00 A Time window cycles=16, Grouping of harmonics=off

HARMONIC ANALYSIS	Test PASS in	Timewindow 1 of
-------------------	--------------	-----------------

На	Value	Percent	Angle	EN61000-3-2 Voltages	Margin	PASS	FAIL
DC	0.006 V	0.00 %	Deg			Х	
1	230.182 V	100.00 %	0.0 Deg			Х	
2	0.005 V	0.00 %	-167.1 Deg	0.4604 V	-98.9 %	Х	
3	0.220 V	0.10 %	62.5 Deg	2.0716 V	-89.4 %	Х	
4	0.006 V	0.00 %	0.4 Deg	0.4604 V	-98.6 %	X	
5	0.183 V	0.08 %	-82.0 Deg	0.9207 V	-80.1 %	Х	
6	0.007 V	0.00 %	-124.2 Deg	0.4604 V	-98.5 %	Х	
7	0.107 V	0.05 %	134.8 Deg	0.6905 V	-84.4 %	Х	
8	0.004 V	0.00 %	85.8 Deg	0.4604 V	-99.1 %	X	
9	0.037 V	0.02 %	26.4 Deg	0.4604 V	-92.0 %	X	
10	0.003 V	0.00 %	50.9 Deg	0.4604 V	-99.3 %	X	
11	0.050 V	0.02 %	-43.9 Deg	0.2302 V	-78.2 %	Х	
12	0.003 V	0.00 %		0.2302 V	-98.6 %	Х	
13	0.060 V	0.03 %	176.9 Deg	0.2302 V	-74.1 %	X	
14	0.002 V	0.00 %	133.3 Deg	0.2302 V	-99.1 %	X	
15	0.032 V	0.01 %	42.6 Deg	0.2302 V	-86.1 %	X	
16	0.001 V	0.00 %	35.8 Deg	0.2302 V	-99.5 %	Х	
17	0.020 V	0.01 %	-19.9 Deg	0.2302 V	-91.3 %	Х	
18	0.002 V	0.00 %	-68.3 Deg	0.2302 V	-99.3 %	Х	
19	0.037 V	0.02 %	-140.9 Deg	0.2302 V	-83.8 %	X	
20	0.002 V	0.00 %	152.6 Deg	0.2302 V	-99.1 %	X	
21	0.030 V	0.01 %	74.9 Deg	0.2302 V	-87.1 %	X	
22	0.001 V	0.00 %	18.6 Deg	0.2302 V	-99.5 %	Х	
23	0.011 V	0.00 %	-16.1 Deg	0.2302 V	-95.4 %	Х	
24	0.001 V	0.00 %	-33.8 Deg	0.2302 V	-99.5 %	Х	
25	0.025 V	0.01 %	-98.3 Deg	0.2302 V	-89.3 %	Х	
26	0.002 V	0.00 %	-178.9 Deg	0.2302 V	-99.2 %	X	
27	0.027 V	0.01 %	115.7 Deg	0.2302 V	-88.3 %	X	
28	0.001 V	0.00 %	41.6 Deg	0.2302 V	-99.7 %	X	
29	0.012 V	0.01 %	-12.5 Deg	0.2302 V	-94.9 %	X	
30	0.000 V	0.00 %	-42.4 Deg	0.2302 V	-99.8 %	X	
31 32	0.014 V	0.01 %	-66.7 Deg	0.2302 V	-93.8 % -99.4 %	X	
33	0.001 V 0.022 V	0.00 % 0.01 %	-138.5 Deg 157.6 Deg	0.2302 V 0.2302 V	-99.4 % -90.4 %	X	
34	0.022 V 0.001 V	0.01 %	77.9 Deg	0.2302 V	-90.4 % -99.5 %	X	
35	0.001 V 0.015 V	0.00 %	12.7 Deg	0.2302 V	-93.3 %	X	
36	0.015 V	0.01 %	-26.8 Deg	0.2302 V	99.9 %	x	
37	0.000 V	0.00 %	-47.6 Deg	0.2302 V	-96.7 %	X	
38	0.008 V	0.00 %	-85.1 Deg	0.2302 V	-99.6 %	X	
39	0.001 V	0.00 %	-166.4 Deg	0.2302 V	-91.9 %	×	
40	0.013 V	0.01 %	97.8 Deg	0.2302 V	99.4 %	x	
70	0.001 V	0.00 /6	37.0 Deg	0.2002 V	-55.7 /6	^	1

Geprült mit EMC test software V2.8f / PASS000 von Spitzenberger + Spies GmbH & Co. KG, Schmidstr 32-34, D-94234 Viechtach, 11.10.2004

Fig. 8: Tabular harmonic overview of the voltage source (PAS 5000)

For all 40 harmonics the measured value is below 25% of the maximum limit value of the IEC/EN 61000-3-2. An ongoing program of continuous product development is continuing to yield even higher levels of performance from the PAS series amplifiers.

PAS SERIES AMPLIFIERS:

THE REFERENCE SOURCE FOR ALL APPLICATIONS

IEC/EN 61000-4-11 Monitoring measurements (options 06/07) and "Inrush current source" (option 19-5)

The relating standards: IEC/EN 61000-4-11 IEC/EN 61000-2-8

MONITORING MEASUREMENTS (OPTIONS 06 AND 07)

The IEC/EN 61000-4-11 voltage dips, short interruptions and variations test can be carried out using an oscilloscope together with the Spitzenberger & Spies Software package "SPS EMC" for the best test documentation and test reports.

Test conditions:

Voltage / Frequency: 230.0 V / 50Hz

Test phase:

Executed test: Dip example 1: Total drop
Test description: Total drop out, time increasing from
1 period up to 100 periods

Disturbances per step: 3 (per phase angle) / with 10.5 sec delay

Step 1 Voltage dip / short interruption Test level: 0 % Duration: 1 period Phase angle (Ref. Phase 1): 0° Step 2 Voltage dip / short interruption Test level: 0 % Duration: 5 periods Phase angle (Ref. Phase 1): 0° Step 3 Voltage dip / short interruption Test level: 0 % Duration: 10 periods Phase angle (Ref. Phase 1): 0° Step 4 Voltage dip / short interruption Test level: 0 % Duration: 25 periods Phase angle (Ref. Phase 1): 0° Dip1: U-100V/Div|I-5A/Div|0.10s/Div Dip2: U-100V/Div|I-5A/Div|0.10s/Div Step 5 Voltage dip / short interruption Test level: 0 % Duration: 50 periods Phase angle (Ref. Phase 1): 0° Step 6 Voltage dip / short interruption Test level: 0 % Duration: 100 periods Phase angle (Ref. Phase 1): 0°

IEC/EN 61000-4-11 Test evaluation results:

- Normal performance within the specification limits
- Temporary degradation or loss of function or performance which is self-recoverable
- Temporary degradation or loss of function or performance which requires operator intervention or system reset
- Degradation or loss of function which is not recoverable due to damage of equipment or software or data loss

1/2

"Inrush current source" - Option 19-5

The relating standards: IEC/EN 61000-4-11 Annex A clause A.3 "EUT peak inrush current requirement"

"INRUSH CURRENT SOURCE" - OPTION 19-5

By using the option 19-5 "Inrush current source", it is not necessary to measure the EUT peak inrush current requirement during the test. Without the option "Inrush current source", tests according to IEC/EN 61000-4-11 can be performed, if the inrush requirement of the EUT is less than the inrush drive capability of the generator.

"In order to be able to use a low-inrush drive current capability generator to test a particular EUT, that EUT's measured inrush current shall be less than 70% of the measured inrush current drive capability of the generator." (EN 61000-4-11:2004-03 / Annex A (normative) A.3)

PAS inrush current drive capability without option 19-5 "Inrush current source":

4-Quadrant Amplifier	Peak current at 90°/270°	EUT Inrush current			
PAS 1000	17A _p	12A _p			
PAS 2500	55A _p	38A _p			
PAS 5000	110A _p	77A _p			
PAS 7500	165A _p	115A _p			
PAS 10000	260A _p	182A _p			
PAS 15000	370A _p	259A _p			

4-Quadrant Amplifier	Peak current at 90°/270°
PAS 20000	520A _p
PAS 25000	630A _p
PAS 30000	740A _p
PAS 40000	1040A _p

"The 4-Quadrant Amplifiers type PAS 20000, PAS 25000, PAS 30000 and PAS 40000 have an inrush current drive capability of more than 500Ap - therefore no additional "Inrush current source" is required.

Basic EMC System®

for measurements according to the basic standards of the EMC directive

The relating standards: emission: IEC/EN 61000-3-2 IEC/EN 61000-3-3 IEC/EN 61000-3-11 IEC/EN 61000-3-12 immunity: IEC/EN 61000-4-4 IEC/EN 61000-4-5 IEC/EN 61000-4-7 IEC/EN 61000-4-8 IEC/EN 61000-4-11 IEC/EN 61000-4-13 IEC/EN 61000-4-14 IEC/EN 61000-4-17 IEC/EN 61000-4-27 IEC/EN 61000-4-28 IEC/EN 61000-4-29 IEC/EN 61000-4-34 IEC/EN 60146-1-1 IEC/EN 61000-2-2 IEC/EN 61131-2 IEC/EN 61496-1 IEC/EN 61800-3

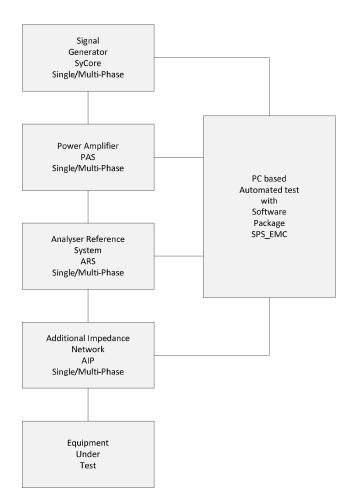
IEC/EN 62040-2

SEMI F47-0706

The "Basic EMC System"® is the fully compliant turnkey system for all line conducted Emission and Immunity tests according to the EMC directive.

Above and beyond the standards the "Basic EMC System"® is a universal grid simulation and measurement system for voltage, frequency and phase symmetry simulation.

On the other hand, the sources of the "Basic EMC System"®, the PAS amplifiers are the reference sources for many applications. Their technical performance and advantages like low THD, very fast rise and fall time, stability and power capability are unique on the market.



THE PRINCIPLE DIAGRAM:

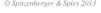
The main components of the "Basic EMC System"®:

- signal generator unit SyCore
- **PAS** power amplifier
- analyser reference system ARS including reference impedance harmonic analyser flickermeter
- Additional impedance network **AIP**
- Software packageSPS_EMC

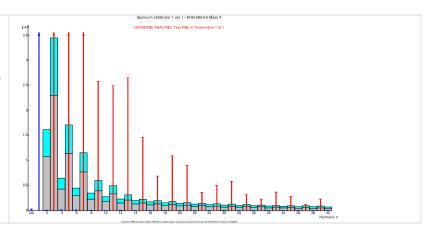
All components are available for single phase and multi-phase testing.

OPTIONS AND ADD-ONS:

- Pulse generator CE-tester for testing burst and surge pulses according to IEC/EN 61000-4-4 and IEC/EN 61000-4-5
- Magnetic field coils for testing the immunity against radiated magnetic fields with power line frequencies



THE "BASIC EMC SYSTEM"®



EVALUATION WITH SPS_EMC

Measured harmonic currents in relation to the maximum limits according to the IEC/EN 61000-3-2

Analyser Reference System

Type ARS 16

Harmonic Analysis / Flicker Analysis

The Relating Standards:

IEC 61000-3-2-am 1 (2001-08) Ed. 2.0 IEC 61000-3-2-am 2 (2004-10) Ed. 2.0 IEC 61000-3-2 (2004-11) Ed. 2.2 IEC 61000-3-2 (2009-04) Ed. 3.2 IEC 61000-3-3-am 1 (2001-01) Ed. 1.0 IEC 61000-3-3 (2002-03) Ed. 1.1 IEC 61000-3-11 (2000-08) Ed. 2.0 IEC 61000-3-12 (2004-11) Ed. 1.0 IEC 61000-3-12 (2011-05) Ed. 2.0

Front view ARS 16/1

Special features:

- ✓ "Double FFT for simultaneous check of the source during the EUT measurement"
 in harmonic analysis
- ✓ Simultaneous two-channel measurement for source check (flicker measurement)
- ✓ Calibratable Line Impedance Simulating Network meets IEC 60725 (2012-06)
- ✓ Digital flickermeter meets IEC 61000-4-15 (2010-08) Ed. 2.0
- ✓ Real-time Harmonic Analyser meets IEC 61000-4-7 (2009-10) Ed. 2.1

The Analyser Reference System type ARS contains the core of the well known and reliable analyser (Ducati/Boconsult B10) for the measurement part, the standard impedance according to IEC 60725 as well as a phase- and current range switching. It allows harmonics measurements according to IEC 61000-3-2 and flicker measurement according to IEC 61000-3-3. All the required diagram connections for the two types of measurement are performed automatically by ARS without any manual operation: this increases the reliability of the measurement avoiding any possible wiring error of the operator and ensures fast and reasonable operation with the test system. In fact, flicker and harmonics measurement can be performed automatically in succession with the EMC test software. Thereby, the standard impedance switches uninterrupted between both measurement modes. In addition, the current ranges of the harmonics measurement are switched overlapping.

ARS is a highly integrated component, including the 3 above mentioned functions in 1 box, thus providing a compact and reasonable solution, without any loss of our high measurement quality in the low-frequency EMC field.

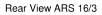
The inside measuring module is compliant to the latest IEC standard amendments, including the **harmonics** measuring technique prescribed by IEC 61000-4-7 Ed. 2.1, with 200ms time windows and grouping inter-harmonics function, as well as the IEC 61000-4-15 Ed. 2.0 d-values calculation.

	Digital Flickermeter
Reference standards	IEC 61000-4-15-am1 (2003-01) Ed. 1.0 /
	IEC 61000-4-15 (2003-02) Ed. 1.1 / IEC 61000-4-15 (2010-08) Ed. 2.0 /
	IEC 61000-3-3-am1 (2001-01) Ed. 1.0 / IEC 61000-3-3 (2002-03) Ed. 1.1 /
	IEC 61000-3-3 (2008-06) Ed. 2.0 / IEC 61000-3-11 (2000-08) Ed. 1.0
Input channels	2
Input channel voltage range	40V _{rms} 504V _{rms} (independent auto ranging on each channel)
Input channel frequency	50Hz or 60Hz ±5%
Flicker produced by	Measurement up to the 50 th harmonic or 40 th for 200ms TW
fluctuating harmonics	
Input channels impedance	Higher than 1.5M Ω
Input channels insulation	3kV (transformer coupled)
Missing-input-signal	Automatic recognition and handling
conditions	
Analogue outputs	(W) Weighted voltage fluctuation
(user selectable)	(L) Linear flicker indication
	(R) Instantaneous flicker sensation
	(D) Relative voltage change characteristic d(t)
Flicker related measurements	CPF, P _{50%S} , P _{10%S} , P _{1%S} , P _{0,1%} , P _{MAX} , P _{ST} , P _{LT}
Accuracy	Higher than specified by IEC 61000-4-15
Flicker classifier scales	Logarithmic
Flicker scales	2 (user selectable): 10% (1600PU) and 40% (25600PU)
Voltage fluctuation	d _c , d _{max} , time with d(t) exceeding a programmable threshold
measurement	
d _c and d _{max} maximum error	0.2%
d(t) evaluation	RMS every half-cycle
Observation period	User selectable (1 / 5 / 10 / 15 min; fast mode for d _{max} evaluation)

- 2 -

	Real-time Harmonic Analyser
Reference standards	IEC 61000-4-7 (2002-08) Ed. 2.0 / IEC 61000-4-7 (2009-10) Ed. 2.1 /
	IEC 61000-3-2-am1 (2001-08) Ed. 2.0 / IEC 61000-3-2-am2 (2004-10) Ed. 2.0 /
	IEC 61000-3-2 (2004-11) Ed. 2.2 / IEC 61000-3-2 (2009-04) Ed. 3.2 /
	IEC 61000-3-12 (2004-11) Ed. 1.0 / IEC 61000-3-12 (2011-05) Ed. 2.0
Frequency	45Hz 65Hz (PLL locked)
Voltage range	90V _{rms} 300V _{rms}
Current range	5mA _{rms} 16A _{rms} with crest factor =3
Shunt ranges	4 user selectable: 0.16A _{rms} / 0.8A _{rms} / 4A _{rms} / 20A _{rms}
Accuracy	Better than 0.2% of the rated current of the EUT
-	(selecting appropriate shunt range)
Voltage channel input	Higher than $0.8 \text{M}\Omega$
impedance	
Current channel input	Depends on the shunt range selected.
impedance	Impedance <3mΩ within the highest range
Max. drop on current channel	150mV _p (any selected range)
Measured values	Magnitude and phase of fundamental up to 40 th (TW=200ms) or
	50 th (TW=320ms), for both U,I
	dc component (U,I); voltage U _{rms} ; current I _{rms}
	active power (W); apparent power (VA); circuit power factor (λ)
	harmonic distortion for voltage and current (Thd _U %, Thd _I %)
Measuring techniques	16 periods rectangular windows (320ms @50Hz; 266.7ms @60Hz)
	10 periods rectangular windows (200ms @50Hz)
	12 periods rectangular windows (200ms @60Hz)
	windows period user selectable
	sampling rate synchronised to the fundamental
Anti aliasing filter	70dB
Smoothing filter	Digital 1 st order low-pass filter (τ =1.5s); software selectable on Harmonics and/or
for transitory harmonics	on active Power
Grouping function	Harmonics and adjacent inter-harmonics - as per IEC 61000-4-7 Ed. 2.1
	(current grouping and voltage harmonics subgroups)
Operating modes	Steady-state harmonics / single-shot (1 time window);
	transitory harmonics / 2.5 minutes (469 time window @50Hz or
	563 @60Hz; 750 time windows in 200ms mode);
	continuous monitoring;
	continuous mode with automatic stop if limits are exceeded
	(only in 16-cycle mode)
	continuous mode with real-time data transmission allowing the complete
	EUT cycle period measurement (<i>Quasi-stationary, Short cyclic, Random and Long cyclic</i>)
Stop trigger condition	Class C and D limits are dynamically computed each time window
(user selectable)	(only in 16-cycle mode)
	Automatic management of 1.5 times overriding for 10% of periods
	for 2 nd 10 th and 3 rd 19 th transitory harmonics

Storage	Last 2.5 minutes in continuous mode (embedded mode)			
	No time-limited period in continuous mode (with PC connection)			
Analogue outputs	Real-time spectrum or shape for voltage and current or dynamic monitoring of			
(user programmable)	any harmonic versus time			
Self calibration	Automatically at power-up			


	Miscellaneous				
Processors	Motorola DSP56002, Intel 80C186				
Input channel resolution	18 bit Σ/Δ A/D converter on each channel				
Analogue output resolution	12 bit				
Interface	IEEE 488 galvanically isolated				
Digital outputs	8 (TTL levels) to control external range selection and reference impedance				
Self test	Automatically at power-up – operator-driven (extended)				
Calibration	Traceable to the national measurement standard published by the PTB (Federal Institute of Physics and Technology)				
U _{input}	Harmonic: AC: 80V _{rms} 300V _{rms} / DC: 0V – 48V ₍₁₎				
	Flicker: AC: $40V_{rms}$ $504V_{rms}$ (auto ranging) / DC: $0V - 48V_{(1)}$				
I _{cont} .	16A _{rms}				
I _{short-time}	32A _{rms}				
Internal resistance	Phase conductor R + jX = $(0.24\Omega+j0.15\Omega)$ @50Hz				
	Neutral conductor R + jX = $(0.16\Omega+j0.10\Omega)$ @50Hz				
	Phase conductor to neutral conductor R + jX = $(0.40\Omega + j0.25\Omega)$ @50Hz				
Measuring inputs	CH1 0V _{rms} 300V _{rms}				
	CH2 0V _{rms} 300V _{rms}				
	HAR 0V _p 10V _{p (2)}				
Mains supply	230V _{rms} (+6% / -10%) 50Hz 60Hz				
Ambient temperature	0°C up to +40°C				
Housing	ARS 16/1 and ARS 16/3:				
	19"-plug-in unit (4U) approx. H=178mm; W=483mm; D=450mm				
	ARS 16/3/TPM:				
	19"-plug-in unit (8U) approx. H=355mm; W=483mm; D=450mm				
Weight	ARS 16/1 ARS 16/3 ARS 16/3/TPM				
	approx. 21kg approx. 25kg approx. 40kg				

⁽¹⁾ At DC-voltages >48V it is **absolutely necessary** to make sure that switching on and off as well as changing the operation mode is to do off load and/or off power.
(2) 3V_{rms} correspond the end value of current range.

Front View ARS 16/3

Line Impedance Simulation Network type AIP

AIP xxx/3

- fixed impedance

AIP xxx/3/P

- programmable impedance

AIP xxx/3/P/JK

- programmable impedance including Japanese/Korean standard

AIP xxx/3/P/TPM - programmable impedance including three phase measurement unit

AIP xxx/3/P/JK/TPM

three phase measurement unit

Fig. 1: AIP 75/3/P/TPM

The line impedance simulation network AIP is designed for testing according to the IEC/EN 61000-3-11 and IEC/EN 61000-3-12. Available current ranges for the AIP are:

- 32 A
- 75 A
- 125 A
- 250 A
- 375 A
- 500 A

When using the AIP types with 32A or 75A the required impedance is set in the software. When starting the test the user is informed which resistors have to be by-passed by means of the low-ohm plug connectors ($R_{contact} \leftarrow 60\mu\Omega$). The AIP types with 125A, 250A, 375A and 500A have an automated pneumatic switch system and are fully computer controlled.

The adjusted impedance values are displayed in plaintext at the front-panel display. The voltage drop (3% ... 5%) according to IEC/EN 61000-3-11 (section 6.1.1) is intended to be displayed also at the AIP front-panel.

The relating standards:

IEC/EN 61000-3-2 IEC/EN 61000-3-3 IEC/EN 61000-3-11 IEC/EN 61000-3-12

> "Harmonics and Flicker emission measurements"

Fig. 2: AIP 125/3/P

TECHNICAL DATA GENERAL⁶⁾:

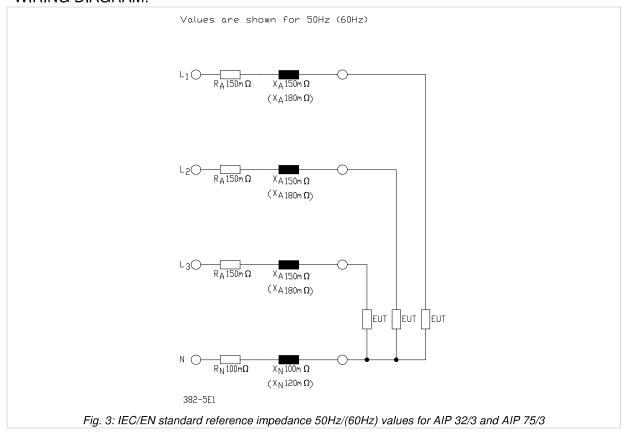
Туре	All AIP types		
Input:			
Input voltage (Harmonic):	AC: 90V _{rms} 300V _{rms} / DC: 0V 48V ⁽¹⁾		
Input voltage (Flicker):	AC: 40V _{rms} 504V _{rms} (auto ranging) / DC: 0V 48V ⁽¹⁾		
Input frequency:	45Hz 65Hz		
Power dissipation:	max. total voltage drop at impedance: $U_Z > 5\%$ of U_N (depending on adjusted impedance; according to IEC/EN 61000-3-11) Japanese/Korean type: $U_Z > 7\%$ of U_N		
Protection circuits:	- Overcurrent (circuit breaker) / - Overtemperature (electronically)		
Impedance accuracy:	Z: 4% (R + jX) (at X/R relation 0.5 0.75 according to IEC/EN 61000-3-11) (calibration cycle: 2 years)		
Measuring outputs:	FLI CH1 $0V_{rms}$ $300V_{rms}$ FLI CH2 $0V_{rms}$ $300V_{rms}$ HAR I $0V_p$ $10V_p$ $\stackrel{(2)}{}$		
Measuring connectors:	4mm laboratory sockets		
Interfaces:	IEEE488		
Power supply:	230V (±10%) 50Hz 60Hz		
Protection:	2A		
Connector:	Safety Plug 16A		
Ambient temperature:	0°C up to +40°C		
Housing:	19"-plug-in unit, colour light grey (RAL 7035)		

Remarks:

- At DC-voltages >48V switching on/off and changing the operation mode **must be conducted off load!**
- 3V_{rms} correspond to the upper range value of the current range. Fixed impedance value for AIP 250/3/P/xxx, AIP 375/3/P/xxx and AIP 500/3/P/xxx
- 4) Fixed impedance value for AIP 125/3/P/xxx
- Fixed impedance value for AIP 32/3/P/xxx and AIP 75/3/P/xxx
- All subjects are due to change
- Impedance values for JK type AIP must be added to the IEC impedance values because of the serial connection of the two impedances

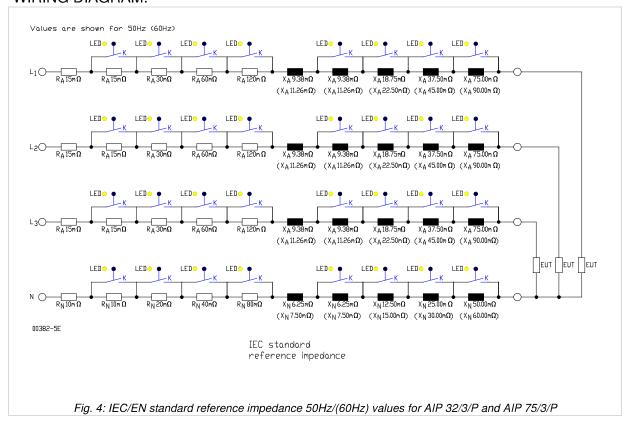
The AIP type glossary:

	AIP	XXX	/3	/P	/JK	/ I PIVI
Additional impedance						
Nominal current (A)						
32/75/125/250/375/500						
Number of phases						
/1 = single phase						
/3 = three phase						
Impedance values are programmable						
/P = yes						
left out = no						
Additional Japanese/Korean reference impedance						
/JK = built-in						
left out = not built-in						
Measurement option						
/TPM = simultaneous three phase measurement						
l eft out = single phase measurement switchable to all phases						



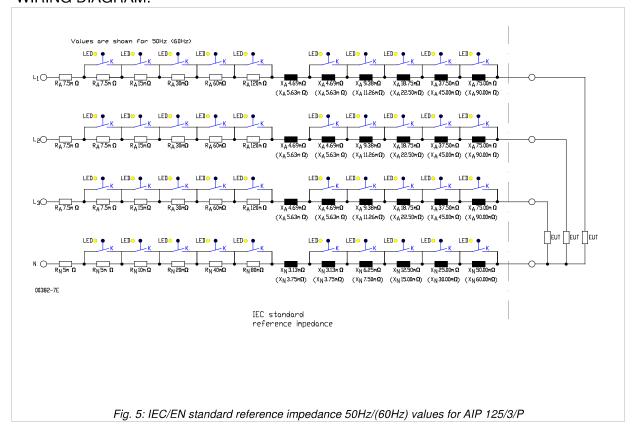
TECHNICAL DATA TYPES AIP 32/3 and AIP 75/36):

Туре	AIP 32/3	AIP 75/3				
Performance:						
Continuous current:	32A _{rms}	75A _{rms}				
Short time current:	64A _{rms}	126A _{rms}				
Internal impedance:						
Phase conductor: Neutral conductor:	R: $150mΩ$ X: $150mΩ$ at $50Hz$ X: $180mΩ$ at $60Hz$ R: $100mΩ$ X: $100mΩ$ at $50Hz$					
Max. phase-neutral impedance:	 X: 120mΩ at 60Hz R: 250mΩ X: 250mΩ at 50Hz X: 300mΩ at 60Hz 					
Resistor bridging:	No bridging					
Cooling type:	Air cooling					
Size:						
Dimensions:	5U 222×490×500	10U 445x490x600				
Weight:	approx. 40kg	approx. 110kg				



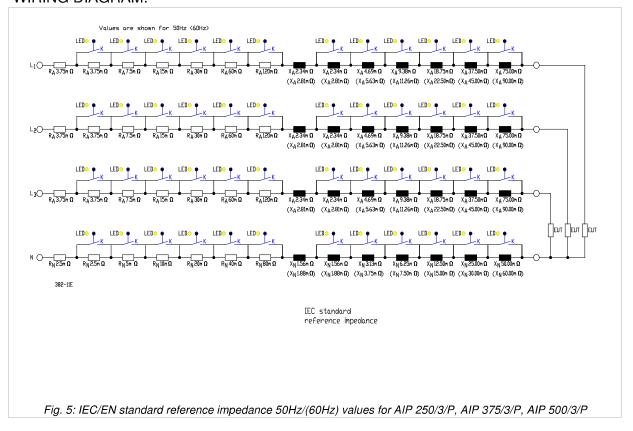
TECHNICAL DATA TYPES AIP 32/3/P and AIP 75/3/P6):

Туре	AIP 32/3/P	AIP 75/3/P		
Performance: ³⁾				
Continuous current:	32A _{rms}	75A _{rms}		
Short time current:	64A _{rms}	126A _{rms}		
Internal impedance:		IEC		
Phase conductor: Neutral conductor: Max. phase-neutral impedance:	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	steps at 50Hz steps at 60Hz		
Resistor bridging:	X: 300mΩ at 60Hz Software assisted manual bridging			
Cooling type:	0 0			
Size:	7.11 CCC1111g			
Dimensions (mm):	15U 667x490x600	15U 667x490x600		
Weight:	approx. 130kg	approx. 155kg		



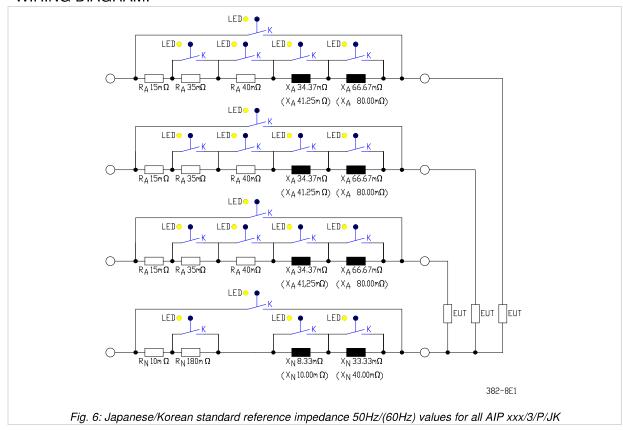
TECHNICAL DATA TYPE AIP 125/3/P⁶):

Туре	AIP 125/3/P					
Performance:3)						
Continuous current:	125A _{rms}					
Short time current:	250A _{rms}					
Internal impedance:	IEC					
Phase conductor:	R: $7.5\text{m}\Omega$ $240\text{m}\Omega$ in $7.5\text{m}\Omega$ - steps					
	X: 4.69 m Ω 150 m Ω in 4.69 m Ω - steps at 50 Hz					
	X: 5.63 m Ω 180 m Ω in 5.63 m Ω - steps at 60 Hz					
Neutral conductor:	R: $5m\Omega \dots 160m\Omega$ in $5m\Omega$ - steps					
	X: 3.13 m Ω 100 m Ω in 3.13 m Ω - steps at 50 Hz					
	X: 3.75 m Ω 120 m Ω in 3.75 m Ω - steps at 60 Hz					
Max. phase-neutral	R: 400mΩ					
impedance:	X: $250m\Omega$ at $50Hz$					
	$X: 300 \text{m}\Omega$ at 60Hz					
Resistor bridging:	Automated pneumatic bridging (pressure: 5-10bar, connector 1/4" NW 7.2)					
Cooling type:	Air cooling					
Size:						
Dimensions (mm):	37U					
	1645x600x600					
Weight:	approx. 650kg					



TECHNICAL DATA TYPES AIP 250/3/P, AIP 375/3/P, AIP 500/3/P⁶):

Туре	AIP 250/3/P	AIP 375/3/P	AIP 500/3/P		
Performance:3)					
Continuous current:	250A _{rms}	375A _{rms}	500A _{rms}		
Short time current:	500A _{rms}	500A _{rms}	750A _{rms}		
Internal impedance:		IEC			
Phase conductor:	R: 3.75 m Ω 240 m Ω	in 3.75m Ω - steps			
	X: 2.34mΩ 150mΩ	in 2.34m Ω - steps at 50Hz			
	X: 2.81mΩ 180mΩ	in 2.81m Ω - steps at 60Hz			
Neutral conductor:	R: 2.5 m $Ω$ 160 m $Ω$	in $2.5m\Omega$ - steps			
	X: 1.56m Ω 100m Ω	in 1.56m Ω - steps at 50Hz			
	X: 1.88mΩ 120mΩ	in 1.88m Ω - steps at 60Hz			
Max. phase-neutral	R: 400mΩ				
impedance:	X: 250mΩ at 50Hz				
	X: 300mΩ at 60Hz				
Resistor bridging:	Automated pneumatic bridgi	ng (pressure: 5-10bar, connecte	or ¼" NW 7.2)		
Cooling type:	Water cooling (connector: 1,	5")			
Size:					
Dimensions (mm):	2x37U	3x37U	3x46U		
	1920x1200x1050	1920x1800x1050	2320x1800x1050		
Weight:	approx. 1000kg	approx. 2000kg	approx. 3000kg		



TECHNICAL DATA TYPE JK (JAPANESE/KOREAN STANDARDS) 6) 7):

Туре	AIP 32/3/P/JK	AIP 75/3/P/JK	AIP 125/3/P/JK			
Performance:3)						
Continuous current:	32A _{rms}	75A _{rms}	125A _{rms}			
Short time current:	64A _{rms}	126A _{rms}	250A _{rms}			
Internal impedance:		Japanese/Korean standard				
Phase conductor:						
		7 m Ω / 101.04 m Ω at 50 Hz				
	X: $0m\Omega / 41.25m\Omega / 80m\Omega / 121.25m\Omega$ at $60Hz$					
Neutral conductor:	R: $0m\Omega / 10m\Omega / 190m\Omega$					
	X: $0m\Omega$ / $8.33m\Omega$ / $33.33m\Omega$ / $41.67m\Omega$ at $50Hz$					
	X: $0m\Omega / 10m\Omega / 40m\Omega /$	50m Ω at 60Hz				
Max. phase-neutral	R: 680mΩ					
impedance:	$X: 393m\Omega$ at $50Hz$					
	X: $471m\Omega$ at $60Hz$					
Resistor bridging:	Automated pneumatic bridgir	ig (pressure: 5-10bar, connecto	or 1/4" NW 7.2)			
Cooling type:	Air cooling ,					
Size:						
Dimensions (mm):	23U	23U	37U			
, ,	1022x490x600	1022x490x600	1645x1200x600			
Weight:	approx. 210kg	approx. 250kg	approx. 1100kg			

POSSIBLE IMPEDANCE COMBINATIONS AIP AT 50Hz:

(Without additional Japanese/Korean standard values):

Fixed values displayed in red colour

No.	R _A [mΩ]	R _N [mΩ]	R _{total} [mΩ]	ratio X _{total} / R _{total}	X _A [mΩ]	X _N [mΩ]	X _{total} [mΩ]	AIP with 32A 75A	AIP with 125A	AIP with 250A 375A 500A
1 ³⁾	3.75	2.5	6.25	0.625	2.34	1.56	3.9	×	×	✓
2 ⁴⁾	7.5	5	12.5	0.625	4.69	3.13	7.82	×	✓	✓
3	11.25	7.5	18.75	0.625	7.03	4.69	15.63	√	√	✓
4 ⁵⁾	15	10	25	0.625	9.38	6.25	15.63	√	✓	✓
5	18.75	12.5	31.25	0.625	11.72	7.81	19.53	×	×	✓
6	22.5	15	37.5	0.625	14.07	9.38	23.45	×	✓	✓
7	26.25	17.5	43.75	0.625	16.41	10.94	27.35	×	×	✓
8	30	20	50	0.625	18.75	12.5	31.25	√	√	✓
9	33.75	22.5	56.25	0.625	21.09	14.06	35.15	×	×	✓
10	37.5	25	62.5	0.625	23.44	15.63	39.07	×	√	✓
11	41.25	27.5	68.75	0.625	25.78	17.19	42.97	×	×	✓
12	45	30	75	0.625	28.13	18.75	46.88	√	√	✓
13	48.75	32.5	81.25	0.625	30.47	20.31	50.78	×	×	✓
14	52.5	35	87.5	0.625	32.82	21.88	54.7	×	√	✓
15	56.25	37.5	93.75	0.625	35.16	23.44	58.6	×	×	√
16	60	40	100	0.625	37.5	25	62.5	✓	✓	√
17	63.75	42.5	106.25	0.625	39.84	26.56	66.4	×	×	√
18	67.5	45	112.5	0.625	42.19	28.13	70.32	×	✓	√
19	71.25	47.5	118.75	0.625	44.53	29.69	74.22	×	×	✓
20	75	50	125	0.625	46.88	31.25	78.13	✓	✓	✓
21	78.75	52.5	131.25	0.625	49.22	32.81	82.03	×	×	✓
22	82.5	55	137.5	0.625	51.57	34.38	85.95	×	✓	√
23	86.25	57.5	143.75	0.625	53.91	35.94	89.85	×	×	✓
24	90	60	150	0.625	56.25	37.5	93.75	✓	✓	✓
25	93.75	62.5	156.25	0.625	58.59	39.06	97.65	×	×	√
26	97.5	65	162.5	0.625	60.94	40.63	101.57	×	✓	√
27	101.25	67.5	168.75	0.625	63.28	42.19	105.47	×	×	✓
28	105	70	175	0.625	65.63	43.75	109.38	✓	✓	✓
29	108.75	72.5	181.25	0.625	67.97	45.31	113.28	×	×	√
30	112.5	75	187.5	0.625	70.32	46.88	117.2	×	✓	√
31	116.25	77.5	193.75	0.625	72.66	48.44	121.1	×	×	√

32	120	80	200	0.625	75	50	125	✓	✓	✓
33	123.75	82.5	206.25	0.625	77.34	51.56	128.9	×	×	✓
34	127.5	85	212.5	0.625	79.69	53.13	132.82	×	✓	✓
35	131.25	87.5	218.75	0.625	82.03	54.69	136.72	×	×	✓
36	135	90	225	0.625	84.38	56.25	140.63	✓	✓	✓
37	138.75	92.5	231.25	0.625	86.72	57.81	144.53	×	×	✓
38	142.5	95	237.5	0.625	89.07	59.38	148.45	×	✓	✓
39	146.25	97.5	243.75	0.625	91.41	60.94	152.35	×	×	✓
40	150	100	250	0.625	93.75	62.5	156.25	✓	✓	✓
41	153.75	102.5	256.25	0.625	96.09	64.06	160.15	×	×	✓
	157.5	102.5	262.5	0.625	98.44	65.63	164.07	×	· ·	✓
42										· ·
43	161.25	107.5	268.75	0.625	100.78	67.19	167.97	×	×	· ·
44	165	110	275	0.625	103.13	68.75	171.88			V
45	168.75	112.5	281.25	0.625	105.47	70.31	175.78	×	×	
46	172.5	115	287.5	0.625	107.82	71.88	179.7	×	√	√
47	176.25	117.5	293.75	0.625	110.16	73.44	183.6	×	×	√
48	180	120	300	0.625	112.5	75	187.5	✓	√	√
49	183.75	122.5	306.25	0.625	114.84	76.56	191.4	×	×	✓
50	187.5	125	312.5	0.625	117.19	78.13	195.32	×	✓	✓
51	191.25	127.5	318.75	0.625	119.53	79.69	199.22	×	×	✓
52	195	130	325	0.625	121.88	81.25	203.13	✓	✓	✓
53	198.75	132.5	331.25	0.625	124.22	82.81	207.03	×	×	✓
54	202.5	135	337.5	0.625	126.57	84.38	210.95	×	✓	✓
55	206.25	137.5	343.75	0.625	128.91	85.94	214.85	×	×	✓
56	210	140	350	0.625	131.25	87.5	218.75	✓	✓	✓
57	213.75	142.5	356.25	0.625	133.59	89.06	222.65	×	×	✓
58	217.5	145	362.5	0.625	135.94	90.63	226.57	×	✓	✓
59	221.25	147.5	368.75	0.625	138.28	92.19	230.47	×	×	✓
60	225	150	375	0.625	140.63	93.75	234.38	✓	✓	✓
61	228.75	152.5	381.25	0.625	142.97	95.31	238.28	×	×	✓
62	232.5	155	387.5	0.625	145.32	96.88	242.2	×	✓	✓
63	236.25	157.5	393.75	0.625	147.66	98.44	246.1	×	×	✓
64	240	160	400	0.625	150	100	250	✓	✓	✓
			.							

ADDITIONAL IMPEDANCE COMBINATIONS JAPANESE/KOREAN STANDARD:

No.	R_A [m Ω]	R_N [m Ω]	R_{total} [m Ω]	$\begin{array}{c} \text{ratio} \\ \textbf{X}_{\text{total}} \ / \ \textbf{R}_{\text{total}} \end{array}$	X _A [mΩ]	X _N [mΩ]	X _{total} [mΩ]	
1	15	10	25	0.625	9.38	6.25	15.63	= Fixed value
2	35	180	215	0.625	34.37	8.33	42.70	
3	40		40	0.625	66.67	33.33	100.00	
4	330	350	680	0.625	251	142	393	= Japanese/Korean standard values

Note: When using the AIP xxx/P/JK version the additional JK impedance can be disabled. The remaining AIP impedance is then the adjusted IEC impedance value. The minimum impedance value is the fixed impedance value of the according AIP version.

TECHNICAL INFORMATION TYPES AIP xxx/3/P/TPM⁶⁾:

The AIP unit with Three Phase Measurement capability (TPM) reduces the total testing time for three-phase EUTs. Whilst the non TPM versions of AIP require a sequential phase by phase test, the TPM version enables the system to measure the EUTs phase lines simultaneously.

To perform an automated test it is strongly recommended to use also an ARS TPM version.

Pulse Generator type CE – TESTER 3rd generation

EMC-Test Equipment for testing the immunity against:

BURST: IEC/EN 61000-4-4

and

SURGE: IEC/EN 61000-4-5

The CE-TESTER and its subunits are available in different configurations: CE-TESTER 1 including SURGE and BURST

CE-TESTER 2 including SURGE, BURST and POWER FAIL SWITCH

EFTG 4510 Standalone BURST generator

CE-SURGE Standalone SURGE generator

Typical configurations: CE-TESTER 1 +CDN 4416 for 3phase testing CE-TESTER 2 +VPS 250-16 for testing surge, burst, power fail, voltage dips and variation

It is possible to build all devices in a 19" rack cabinet.

The relating standards: IEC/EN 61000-4-4 IEC/EN 61000-4-4

The CE-TESTER is a compact EMC test unit designed for testing electromagnetic immunity against pulsed and conducted interference. Demonstrating such immunity is generally a requirement for compliance with the European EMC directive, a necessary step leading to the CE mark.

In its basic configuration, the CE-TESTER includes an Electrical Fast Transient Generator (EFTG), a Combination Wave Generator (CWG) and a Coupling-/Decoupling Network (CDN) for single-phase power supply lines.

The Electrical Fast Transient Generator fully compliant to the IEC/EN 61000-4-4, delivers fast transient pulses with waveform 5/50 ns and a maximum burst frequency of 1MHz. It is used for immunity testing of electronic systems and devices. The four standard IEC/EN 61000-4-4 test levels may be easily selected by push button or all parameters may be adjusted individually.

The Combination Wave Generator fully compliant to IEC 61000-4-5 and IEEE 587 delivers a standard impulse voltage with waveform 1.2/50 @s and a standard impulse current with waveform 8/20 @s. It is a combined impulse-current-/impulse-voltage generator for high impedance loads RL > 100 and may be used for surge testing of components and devices, as well as for galvanic coupling of surges to cable shields, shielded enclosures and cabinets.

The built-in capacitive Coupling-/Decoupling Network allows superimposition of the combination wave generator output to the mains voltage of the device under test.

The simulation of voltage dips and voltage variations acc. to IEC/EN 61000-4-11 can be included as an option. Additional accessories allow the testing of immunity against both pulsed and power frequency magnetic fields according to IEC/EN 61000-4-8 and IEC/EN 61000-4-9.

Optionally the CE-TESTER can include a triggerable power supply switch which allows the simulation of the voltage dips as specified in the standard IEC/EN 61000-4-11. The variation of power supply voltage is controlled by use of an external motor driven variac. The control of the external power source is included in the mainframe.

An Induction Coil in conjunction with the Combination Wave Generator output, is used to simulate pulsed magnetic fields according to IEC/EN 61000-4-9. Combined with the external power source, the Induction Coil can be used to simulate power frequency magnetic fields according to IEC/EN 61000-4-8.

Additional Coupling-/Decoupling Networks covering three-phase power supply lines, DC supply lines and signal lines are also available, as well as a Capacitive Coupling Clamp for coupling to shielded interconnection lines.

The CE-TESTER excels by its compact design, simple handling and precise reproducibility of test impulses. It features a microprocessor controlled user interface and a 5" touch screen unit for ease of use. The microprocessor allows the user to execute either standard test routines or a "user defined" test sequence. A standard USB port provides the ability to print a summary of the test parameters to a USB stick.

The software program CE-REMOTE allows full remote control of the test generator via Ethernet light guide as well as documentation and evaluation of test results, accordingly to the IEC 17025. To record definite impulses, it is equipped with an Impulse Recording Function (IRF)

Moreover all generator functions including the built-in Coupling-/Decoupling Network, may be computer controlled via the isolated optical interface.

TECHNICAL DATA CE-TESTER

Control:	Microprocessor control, touch panel 5",	800X480, 24 bit		
	Optical Ethernet interface for generator remote control	optional		
	Interface for saving reports	USB		
	External trigger input / output	10V at 1kΩ		
	Connector for external safety interlock loop	24V _{DC}		
	Connector for external red and green warning lamps according to VDE 0104	230V, 60W		
	Coupling-/decoupling network for power supply lines	L1, N, PE		
	Nominal voltage, nominal current	250 V, 16 A ≈ / 10 A =		
	Coupling impedance (depending on the generator)	33 nF / 18 @F / 9@F+10		
	Mains power	230V, 50Hz/60Hz		
Housing:	Plug in unit, 7U			
	Dimensions (mm): W * H * D	450*185*500		
	Weight	25kg		
Burst:	acc. to IEC/EN 61000-4-4: 2011			
	Pulse output voltage, adjustable	0.2 - 5.0 KV ± 10 %		
	Waveform	5/50 ns		
	Source impedance	50Ω		
	Polarity, selectable	pos/neg/alt		
	Burst frequency, adjustable	1.0 kHz - 1.0 MHz		
	Burst duration, adjustable	0,01 ms - 25 ms		
	Burst repetition rate, adjustable	10 ms - 1000 ms		
	HV output for external coupling devices coaxial			
	Monitor output for pulse output voltage ratio	100:1 ± 5%, 50Ω		
Surge:	acc. to IEC/EN 61000-4-5: 2007			
	Test voltage (open circuit condition)	0.2 – 5.0 kV ± 10 %		
	Waveform acc. to IEC 60060 1.2 / 50 @s ± 20 %			
	Test current (short circuit condition)	0.1 - 2.25 kA ± 10 %		
	Waveform acc. to IEC 60060 8 / 20 @s ± 20%			
	Polarity of output voltage/current, selectable	pos/neg/alt		
	Maximum stored energy	120 J		
	Charging time for max. charging voltage	< 10 s		
	HV output isolated from ground HV-OUT	4mm		
	Mains synchronous triggering, phase shifting, digitally selectable	0 - 359°, step 1°		
	Monitor output for pulse output voltage ratio	1000 : 1 ± 5%		
	Monitor output for pulse output current 10 V	5 kA ± 5%		
	Option: Software CE-REMOTE Test, for remote control With Impulse Recording Function (IRF)			
	(XP, WIN7) incl. 5 m fibre optic cable and PC Ethernet interface			

Practical measurements and IEC/EN 61000-4-11

- rise and fall time during short-circuits at different places of a supply installation

The relating standards: IEC/EN 61000-4-11 IEC/EN 61000-2-8

The part IEC/EN 61000-4-11 of the international IEC/EN 61000 series standards defines test methods for immunity testing and test levels for voltage drops, short interruptions and voltage variations. The standard is applicable for devices intended to be connected to the public low power distribution network. The generation of voltage drops the IEC/EN 61000-4-11 specifies and requires a voltage source with a rise- and fall-time of 1-5 μ s at 100 Ω load.

At a nominal voltage of 230V this means: $230V_{\text{eff}}/\mu s$ up to $46V_{\text{eff}}/\mu s$ (=325V/ μs up to $65V/\mu s$).

The basics about the arising. the effects, remedial actions measuring methods and measurement results of devices to be tested according to IEC/EN 61000-4-11 are defined in the IEC/TR 61000-2-8 Ed. 1.0. The disturbances are described as phenomena appearing on public low voltage supply networks and having influence on devices connected to this public grid This document shall demonstrate, that practically the rise- and fall-times of the supply voltage are in the range of 1-5µs (as described in the IEC/EN 61000-4-11 in the chapter A2: requirements of

One of the main reasons for voltage dips and short interruptions on the public supply network are electric short-circuits occurring on any point of the supplying grid.

the voltage source).

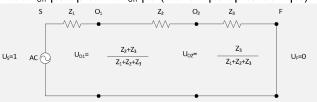
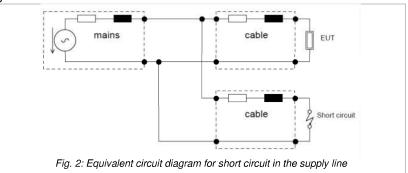


Fig. 1: Equivalent circuit for voltage drops acc. to IEC/EN 61000-2-8

Table 1: Requirements of the testing voltage source acc. to IEC/EN 61000-4-11

In electrical systems short circuits cannot be avoided at all. The amplitude of a voltage drop depends on the distance between monitoring point, short-circuit point and supplying source. This relation is shown in Fig. 2. To meet the practical values described in the technical report IEC/TR the requirements of the testing voltage source of the IEC/EN 61000-4-11 are well defined in table 1.

The theoretical values for riseand fall-time can be calculated by simulation software. For this simulation the parameters for the cable length must be calculated. The definition of the equivalent circuit was given as a short circuit at the load, at the local grid entry point and within the local grid.


The base impedance for the simulation is the mains reference impedance defined in the IEC/EN 61000-3-3 with 0,4+j0,25 Ohm. The simulation performed the characteristic of a resistive load with 16A nominal current at a nearby (20m) occurring short circuit (with a cable diameter 1,5mm²).

The rise- and fall-times of the supplying voltage at short circuit are shown in Fig. 3. And Fig. 4.

In Fig. 4 (higher resolution in the time base) the fall-time of the supplying voltage can be seen in a range of 5µs.

To verify the simulated values with the rise- and fall-time of the reality several practical measurements have been performed.

The measurement results were then compared with the simulation results.

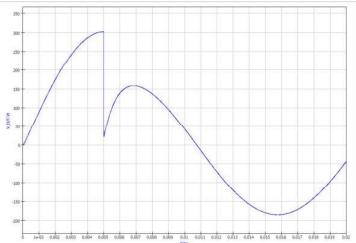


Fig. 3: Voltage characteristic during simulation (1ms/DIV)

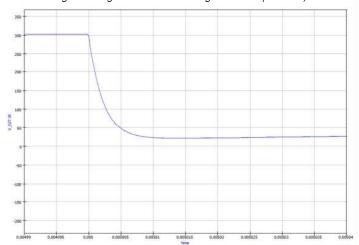


Fig. 4: Voltage characteristic during simulation (5µs/DIV)

PRACTICAL SHORT CIRCUIT MEASUREMENTS

To investigate the real occurring rise- and fall-times several practical measurements have been performed. The electrical installation of an existing building was provided. At two points of the installation a laboratory bench was set up. The installation of the building can be described with the following equivalent circuit diagram which was verified through a practical measurement of the installation of the building:

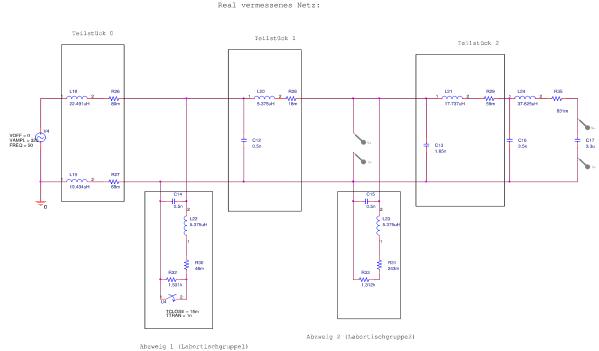


Fig. 5: Equivalent circuit of the building installation

The equivalent circuit shows three parts of the installation ("Teilstück 0-2") and the two workbench connections ("Abzweig 1/2"). The input voltage source is an ideal source with 230V nominal voltage at 50Hz. The parts "Teilstück 1", "Teilstück 2" and "Teilstück 3" are representing three parts of the current bar. The workbenches are connected with a supply cable with a length of 5m. Different EUT's were connected to the end of "Teilstück 2" with a supply cable of 35m length.

The inductive and capacitive parameters of the cabling system were determined using the technical report "Simulation of short circuit on different places and influences on rise time" of Mr.Lutz, Fa. EMC Partner AG as follows:

$$L_{line} \coloneqq 1.075 \frac{\mu H}{m}$$
 $C_{line} \coloneqq 0.75 \frac{\mu H}{m}$

The serial impedances of the single cable parts were calculated through loading and measuring the voltage drop over the cable length.

<u>Practical measurement 1:</u> Short circuit between L2 and N

without load Measurement between L2 and N

Voltage curve at point 1 fall-time approx. 200V/µs

Voltage curve at point 2 fall-time approx. 300V/µs

Voltage curve at the end of the line fall-time approx. 300V/µs

Detailed view: Resolution 1µs/DIV

Voltage curve at point 2

Voltage curve at the end of the line

Detailed view: Resolution 500µs/DIV

Voltage curve at point 2

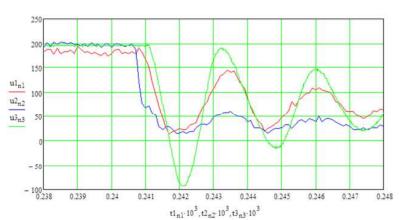


Fig. 6: Voltage curve at short circuit measurement 1 (5ms/DIV)

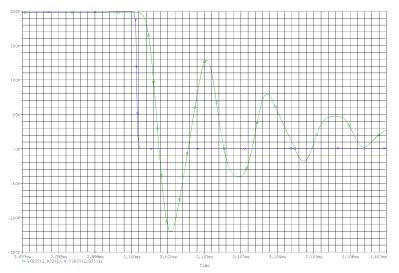


Fig. 7: Voltage curve at short circuit measurement 1 (1μs/DIV)

Fig. 8: Voltage curve at short circuit measurement 1 (500µs/DIV)

Practical measurement 2:

Short circuit between L2 and N with 600W rectifier load Measurement between L2 and N

Voltage curve at point 1 fall-time approx. 300V/µs

Voltage curve at point 2 fall-time approx. 600V/µs

Voltage curve at the end of the line fall-time approx. 350V/µs

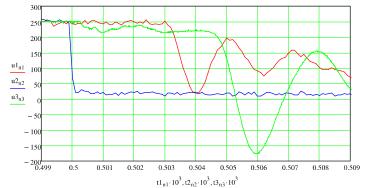


Fig. 9: Voltage curve at short circuit measurement 2 (5ms/DIV)

Practical measurement 3:

Short circuit between L2 and N with $0.1 uF//268\Omega$ load Measurement between L2 and N

Voltage curve at point 1 fall-time approx. 300V/µs

Voltage curve at point 2 fall-time approx. 800V/µs

Voltage curve at the end of the line fall-time approx. 65V/µs

Detailed view: Resolution 0,5µs/DIV

Voltage curve at point 2

Voltage curve at the end of the line

Detailed view: Resolution 500µs/DIV

Voltage curve at point 2

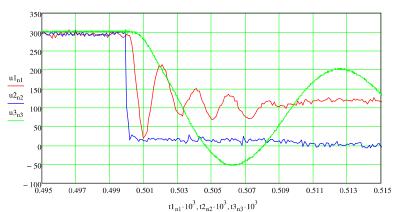


Fig. 10: Voltage curve at short circuit measurement 3 (5ms/DIV)

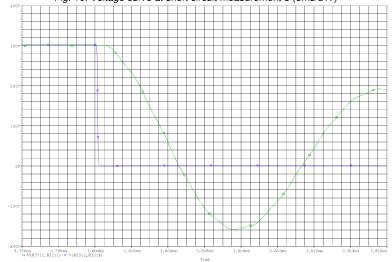


Fig. 11: Voltage curve at short circuit measurement 3 (0,5µs/DIV)

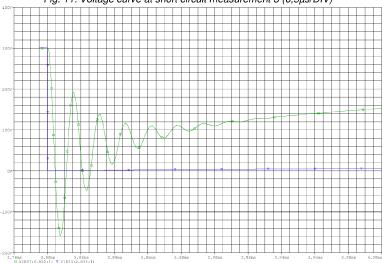


Fig. 12: Voltage curve at short circuit measurement 3 (500µs/DIV)

Practical measurement 4:

Short circuit between L2 and N with 1uF in series 16,5 Ω load Measurement between L2 and N

Voltage curve at point 2 fall-time approx. 2000V/µs

Voltage curve at the end of the line fall-time approx. 40V/µs

Detailed view: Resolution 0,5µs/DIV

Voltage curve at point 2

Voltage curve at the end of the line

Detailed view: Resolution 500μs/DIV

Voltage curve at point 2

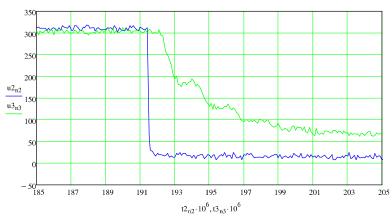


Fig. 13: Voltage curve at short circuit measurement 4 (5ms/DIV)

Fig. 14: Voltage curve at short circuit measurement 4 (0,5µs/DIV)

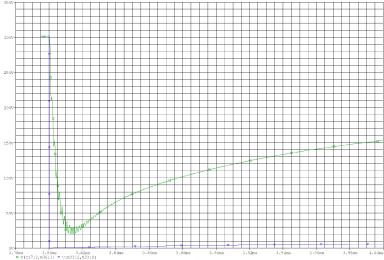
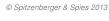



Fig. 15: Voltage curve at short circuit measurement 4 (500µs/DIV)

Practical measurement 5:

Short circuit between L2 and N with 0,1uF in series 16,5 Ω load Measurement between L2 and N

Voltage curve at point 2 fall-time approx. 2000V/µs

Voltage curve at the end of the line fall-time approx. 40V/µs

Detailed view: Resolution 0,2µs/DIV

Voltage curve at point 2

Voltage curve at the end of the line

Detailed view: Resolution 500μs/DIV

Voltage curve at point 2

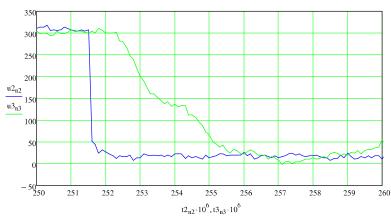


Fig. 16: Voltage curve at short circuit measurement 5 (5ms/DIV)

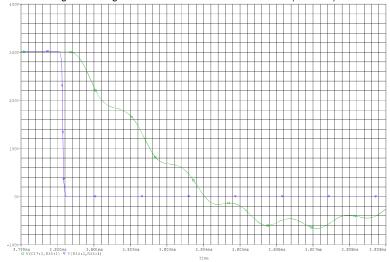
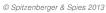



Fig. 17: Voltage curve at short circuit measurement 5 (0,2µs/DIV)

Fig. 18: Voltage curve at short circuit measurement 5 (500µs/DIV)

Practical measurement 6:

Short circuit between L2 and N Measurement between L1 and N

Voltage curve at point 1 fall-time approx. 10V/μs

Voltage curve at point 2 fall-time approx. 180V/us

Voltage curve at the end of the line fall-time approx. 15V/μs

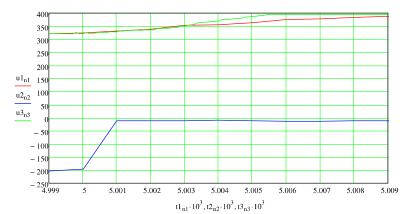


Fig. 19: Voltage curve at short circuit measurement 6 (5ms/DIV)

Practical measurement 7:

Short circuit between L1 and L2 with $0.1 uF//268\Omega$ load Measurement between L2 and N

Voltage curve at point 1 fall-time approx. 200V/μs

Voltage curve at point 2 fall-time approx. 300V/μs

Voltage curve at the end of the line fall-time approx. 30V/μs

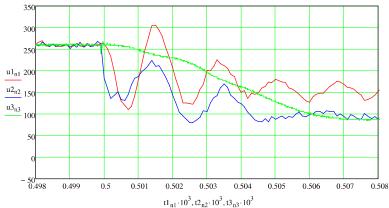


Fig. 20: Voltage curve at short circuit measurement 7 (5ms/DIV)

CONCLUSION:

These practical measurements are showing clearly:

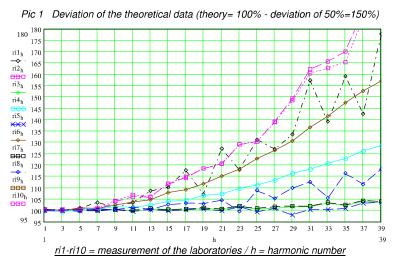
- 1. The nearer the short-circuit appears, so much faster are rise- and fall-times.
- 2. Directly at the short circuit rise- and fall-times are faster than 1us.
- 3. Depending on the load and the distance to the short-circuit different rise- and fall-times can be measured, but all of them are between 1-5us.

In comparison between simulation and measurement data we can see, that simulation and reality are very close together.

"The definitions given in the IEC/EN 61000-4-11 of the preferred voltage source are eminent important to perform realistic test cycles."

Comparison measurement of various measurement systems - Round Robin test "Measurement uncertainty" of the DKE

The standards IEC/EN 61000-3-2 IEC/EN 61000-4-7


Some years ago, it was found that there was a great variation in the measurement results obtained from various test systems when performing tests in accordance with the standard IEC/EN 61000-3-2. Deviations of up to 100% were apparent, although the standard defines a measurement accuracy of 5%. As a direct result, the German national (DKE) founded the "measurement uncertainty" working group to investigate this problem.

The members of the working group agreed to commence an inter-laboratory test, with the aim of establishing the reason for the variation in the measurement results. Several measurement laboratories, and companies, participated in the inter-laboratory test. The participants received two different rectifier circuits, each of which was assembled from very precise and accurately measured components. Each participant then carried out a series of measurements in accordance with the standard IEC/EN 61000-3-2.

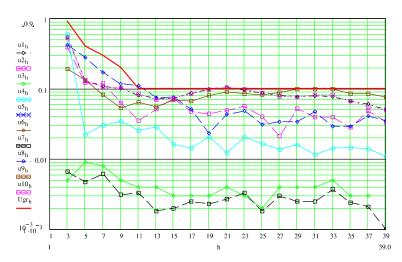
The results of Round Robin test 1:

The results confirmed that the measuring devices (harmonic analyser) produced more or less acceptable measurement results. Comparison showed that the various sources (amplifiers) caused the greatest deviations. Now, the behaviour of these precisely constructed and measured test specimens could also be characterised by various simulation methods. Therefore an exact FFT analysis was conducted, by way of calculation, utilising PSpice. As a result, the precise behaviour of these test specimen candidates was thus defined.

Pic 1 compares the measured data with the theoretical data (100%). The higher the harmonic order, the bigger is the deviation of several measurement systems and therefore the measurement uncertainty. Deviations of more than 80% are clearly shown in Pic 1. A source from another manufacturer even had a deviation of up to 90%.

The results of the second Round Robin test:

A second inter-laboratory test was started. The harmonics of the supplied test specimen were adjusted to the result of class A in the range of approx. 13th up to the 39th harmonic. Furthermore, various real-life test specimens (e.g. a TV-set, various lamps etc.) were also measured in the second test for comparison purposes. Again, the measurements were performed according to the standard IEC/EN 61000-3-2.


During both the first and second inter-laboratory tests, most of the laboratories also measured the harmonics of the voltage (see pictures 2 and 3). Analyzing the voltage harmonic data, it was noticeable that the measurement data of the test equipment with the closest correlation to the simulation analysis also produced the smallest voltage harmonics. Comparing the simulation data with the actual measurement data of those test equipment units showed that the measurement results of these devices were within the 5% limit (actual was within approx. 4%).

These devices were a test system owned by VDE, which had been completely designed and manufactured by Spitzenberger & Spies, and a test system used at the production plant of Spitzenberger & Spies. Some other test systems including those with a source made by Spitzenberger + Spies (but with measurement devices from other manufacturers), turned out to have slight deviations but to be acceptable compared to other sources.

 $\begin{array}{c} \mathbf{ul_h} \\ \mathbf{ul_h} \\$

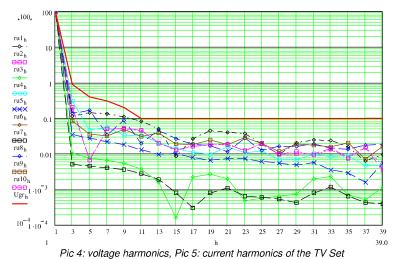
Pic 2 voltage source harmonics caused by the 600W test specimen

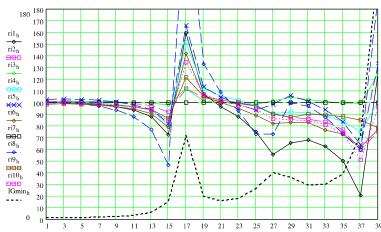
Pic 3 voltage source harmonics caused by the 44W test specimen

In spite of the little load of 44W some of the sources are at the harmonic limits.

The PAS-power source reaches only 3,5% of the maximum limit.

The voltage harmonic currents of the Spitzenberger & Spies PAS sources were more than 30-100 times better than specified in the relevant standards. A similar result was measured when testing other EUT's like TV-Set's (see Pic 4). Also here the PAS sources had a voltage harmonic distortion much less than requested according to IEC/EN 61000-3-2.


Taking the source with the lowest harmonic voltage content (ru7 = VDE-PAS)as a reference, a comparison of measurement uncertainty can be shown in Pic 5. The VDE-PAS System (ri7) measurement uncertainty defines the reference line (100%). All other measurement systems have a more or less extremely high deviation from the 100% reference value.


Round Robin test Result:

Spitzenberger & Spies Basic EMC System

Fully compliant as a standard

The comparison measurement with various measurement systems and three verifiable reference test specimen showed that there are very high deviations when using various sources. Only the test systems with PAS-series sources from Spitzenberger & Spies are able to keep within the defined 5% limits. In most of the other cases, the use of unsuitable sources is generating additional harmonics. However, the opposite result is possible. This causes incorrect measurement results. Specific sources (e.g. switching amplifiers) cause extremely large errors; comparison measurements conducted directly from the utility AC supply hardly resulted in worse values.

The aim of conducting tests in accordance to a published standard is to obtain accurate and repeatable measurement results. Inaccurate measurements may cause very high costs - once as a result of over-engineering and again by the loss of the CE-mark.

