Entrance to EMI

Scan Measurement Mode

What is EMC/EMI

- EMC has verified / classified by its characteristics and the co-relation with EUT
- This presentation is concentrated on CE of EMI, especially for CM and DM in CE

EUT(DUT) = Equipment Under Test (Device Under Test)

What is EMI

- The Classification of EMC is done by frequency range
- The range is being changed by introducing new EUT, day by day
- World-wide and/or each country has the regulation/standard of EMC/EMI related and any of EUT has controlled by such regulation/standard
- Mostly familiar regulation/standard are
 - CISPR(The International Special Committee On Radio Interference)
 - EN (European Norm)
 - FCC (Federal Communications Commission)
 - IEC (International Electrotechnical Commission)

What CE and CM / DM

- CE -- Noise moved through the line(s) to EUT
- CM : Common-Mode Noise
 = Noise Line to Ground

• DM : Differential-Mode Noise = Noise Line to Line

Measurement of the Noise(s)

- Measurement is done by EMI Receiver Occasionally done by Spectrum Analyzer, but not recommended
- Basic equipment are EMI receiver and LISN(Line Impedance Stabilization Network)
- Configuration and Setup of Measurement equipment be decided / done by
 - -- what kind of EUT to be measured
 - -- which regulation/standard is applied
- LISN has various models, according to the power condition(of EUT), like 16A to 200A, 1ph to 3ph
- Measurement is recommended to select/choose a place, having minimized outer noise influence, like in chamber or mini-shield room.

Measurement of the Noise(s)

<u>Solution = Debugging is to reduce/control the noise under the limit lines.</u>

How to Reduce the Noise(s)

Various way of methods can be considered/applied to reduce the noise(s) Below are some of mostly used method/consideration Recommended the Filter should be the LAST solution

- Pattern
- The Ideal approach
- To achieve most recommended EMI Solution/Debugging, EMI consideration/design should be started at the same time of EUT design
- ♦ Wiring
- Do not do the wire twisted
- Allocate wires be separated, as far as possible
- Position
- Filter should be located at the "just" entrance of power input
- Shielding
- Shield any components, causing noises,
- Separate the components with shielding materials

Filters : The Last & Final Solution = Debugging

Distributed by: Reliant EMC LLC, 3311 Lewis Ave, Signal Hill CA 90755, 408-916-5750, www.reliantemc.com

Actual in the field

- = EMI Solution/Debugging is the last,
 - after EUT design is finished

Why EMI Debugging is Difficult - Filter Design

Measured Noise = Total Noise = CM + DM

Measured results

Total Noise = CM + DM

Filter is consisted with two types of components

Common-Mode Group -- CM Coil and Y-Capacitor

Differential-Mode Group -- DM Coil and X-Capacitor

Why EMI Debugging is Difficult - Filter Design

• How to determine the noise is CM or DM, from the measured noise, total noise ???

Experience **Know-How**

• How to select the components ???

Know-How **Experience**

• How fast the components selection can be done ???

Experience Know-How

• How to be sure the selected components are accurate & exact size for the solution ???

Summary of EMI Solution = Debugging = EMI Filter Design

- Analysis and Measurement of Exact Noise by mode, CM and DM
- EMI Solution = Debugging is finalized by EMI Filter (EMI Filter Design)
- Understanding more and more about the components being used on EMI Filter
- Design EMI Filter, using smaller Components and less Quantity

<u>Successful EMI Debugging = Good & Fast Filter Design</u>

<u>COST SAVING = COMPETITIVENESS</u>

Consideration to make EMI Debugging as EASY WORK

MEASURE the noises by mode, CM and DM, respectively

SELECT the components in exact size and performance, mode by mode

SIMULATE the performance of the components and the filter

APPLY the selected components as "Primary" filter to EUT

- Simulate the performance of the selected components and also the designed filter
- Apply selected components as "Primary" filter to EUT

Distributed by: Reliant EMC LLC, 3311 Lewis Ave, Signal Hill CA 90755, 408-916-5750, www.reliantemc.com

DM Mode Noise

Basic System Configuration – EA-2100

- Basic System consist of EMI Receiver, EMI Analyzer(EA-2100), and LISN
- EA-2100 consists of main body and Filter Test Kit(FTK-05)
- > Available to supply the item in individual unit and also as package
- > Mini Shield Room should be a good option for effective and economical test environment

Preparation – System Set Up

- Set up the system = EMI Receiver + EA-2100 + FTK-05 + LISN
- Set up EMI Receiver as your selected measurement condition

Most EMI Receiver has EMI software which set up the limit lines, frequency ranges, and etc, by only selecting the regulation/standard, like CISPR14..

- Check the ground of each unit/item = **Good ground condition is Important**
- Power Line Filters shall be recommended to protect any outer noise influence

Preparation – System Check

- Check the system with EMI Receiver and/or with Reference Source(CRS-1530)
- Measure L1, or L2 of EUT
- Change the Attenuation level on EMI Receiver and measure again
- Compare the results ;
 - 1st Highest Noise point should be at same frequency point

Only Noise level should be changed matching with the selected attenuation Level

CRS-1530

- Measurement is for certain frequency range ONLY
- The noise is not only within the range, existing before and after the selected frequency range
- In case, any of big noise(energy) is existed in lower frequency range, it can cause wrong measurement results.

204 kHz 90.50 dBuV

107.0 dBuV

LOG 10 dB/

10 dB

Measurement - Initial

- Measure L1, and L2 with EMI Receiver EA-2100 is on "TEST" Mode
- Select one of them, L1 or L2, the higher noise measured
- Select "ANALYSIS" Mode ; Default is "LOW" and "CM[ON]"
- Measure CM Mode Only

Components Selection -CM Mode - Understanding the components

- Impedance is the Key of Component
- Using minor(hidden) factors of Components
- Achieve good design by considering/using such minor factors

Components Selection –CM Mode

- Select any of CM Mode Components you have
- Apply it(them) on FTK
- Measure the results.

Components Selection – DM Mode – Understanding the components

- Impedance is the Key of Component
- Using minor(hidden) factors of Components
- Achieve good design by considering/using such minor factors

X-Capacitor + DM Choke Coil

Components Selection –DM Mode

- Select any of DM Mode Components you have
- Apply it on FTK
- Measure the results.

Measurement - Final

Line 1

Solved=debugged

Extended Function of EA-2100 / Radiated Disturbance(RE)

- Radiated Disturbance(RE) is from 30MHz to 1.1GHz
- In the most cases, RE noise is detected below 300MHz
- EA-2100 has function "HIGH" to measure and analyze the noise up to 300MHz, mode by mode
- Noise Pattern measured through this has almost same shape/pattern of actual RE noise
- Through this, catch RE noise source and how to control/reduce RE noise under the regulation/standard

